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Mechanics of fiber networks under a bulk strain
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Biopolymer networks are common in biological systems from the cytoskeleton of individual cells to collagen
in the extracellular matrix. The mechanics of these systems under applied strain can be explained in some cases
by a phase transition from soft to rigid states. For collagen networks, it has been shown that this transition is
critical in nature and it is predicted to exhibit diverging fluctuations near a critical strain that depends on the
network’s connectivity and structure. Whereas prior work focused mostly on shear deformation that is more
accessible experimentally, here we study the mechanics of such networks under an applied bulk or isotropic
extension. We confirm that the bulk modulus of subisostatic fiber networks exhibits similar critical behavior as a
function of bulk strain. We find different nonmean-field exponents for bulk as opposed to shear. We also confirm
a similar hyperscaling relation to what was previously found for shear.

DOI: 10.1103/PhysRevE.106.L062403

Introduction. The mechanical stability of cells and tissues
is largely governed by interconnected biopolymer networks
such as actin and collagen. In the linear regime, the rigidity of
networks of stiff fibers such as collagen is strongly dependent
on the average connectivity or coordination z [1–3]. While
these structures undergo a mechanical phase transition from
a floppy to a rigid state at the critical or isostatic connectivity
zc [4], this threshold lies well above the physiological con-
nectivity of fibrous networks in 3D [5–7]. Such subisostatic
fiber networks, however, undergo a strain-controlled phase
transition from floppy to rigid states when subject to a finite
deformation [8,9]. This transition is critical and occurs at a
threshold shear strain that depends on the network’s connec-
tivity and geometry [10–12]. More recent work has shown that
the mechanical stability of these networks can be understood
in terms of emerging states of self-stress [13–17]. Near the
critical strain, the shear modulus exhibits a power law behav-
ior with a nonmean-field exponent.

Here we study the mechanics of subisostatic fiber net-
works under a finite isotropic extension. We note that although
the volumepreserving shear properties of fiber networks are
most directly accessible in experiments, the uniaxial and bulk
rheological effects can become relevant, particularly in the
low-frequency limit [18,19]. Using a 2D triangular lattice-
based model, we calculate the differential bulk modulus B
with varying bending stiffness of fibers. In the absence of
bending interactions between fiber crosslinks, the bulk modu-
lus remains zero until a critical extensional strain εc at which
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B jumps to a finite value (Fig. 1). The onset of a finite bulk
modulus coincides with a network-spanning tensional pattern
of bonds, as shown in Fig. 1. Near the critical extensional
strain, we obtain various critical exponents and verify collapse
of our modulus data using a Widom-like scaling function with
two branches for strains above and below the threshold value.
Moreover, we confirm a hyperscaling relation analogous to
what has been previously derived for fiber networks under a
simple shear strain [20].

Model. In order to study the mechanics of fiber networks
under bulk extension, we begin with a triangular lattice in
2D. For every node or crosslink in a triangular structure, we
have three well-defined crossing fibers of length W and lattice
spacing l0 = 1. Thus, a full triangular network has a connec-
tivity of six. To avoid the trivial effect of a system-spanning
fiber, we initially cut a random bond from each fiber [2,21].
Consequently in order to mimic realistic subisostatic biopoly-
mer networks, we reduce this connectivity to z = 3.3 < zc =
2d by randomly removing bonds from the initial full lattice
(Fig. 2). The network’s elastic energy includes both stretching
and bending terms

H = μ

2

∑
〈i j〉

(li j − li j,0)2

li j,0
+ κ

2

∑
〈i jk〉

(θi jk − θi jk,0)2

li jk,0
, (1)

where li j,0 and li j are the initial (relaxed) and current bond
length between nodes i and j, θi jk,0 and θi jk are the initial and
current angle between neighboring bonds i j and jk, respec-
tively, and li jk,0 = (li j,0 + l jk,0)/2. Here, μ is the stretching
modulus and κ is the bending rigidity of the fibers. The first
summation is over all connected nodes and the second is over
all nearest-neighbor bonds on the same fiber, i.e., collinear
adjacent bonds in the initial configuration. We set μ = 1 in
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FIG. 1. Differential bulk modulus B as a function of bulk strain
for a diluted triangular network at z = 3.3. The network has a zero
bulk modulus below a critical strain at which B jumps to a finite value
Bc. Three snapshots of a small section of the network corresponding
to the highlighted points on the modulus curve are shown. The frame
is fixed in place for all three snapshots. For a bond m with a tension
τm = (lm − lm,0)/lm,0, we plot its thickness proportional to its relative
tension τm/〈|τ |〉. The red and blue colors correspond to a positive and
a negative τm, respectively. The gray bonds have zero tension.

our simulations and vary the dimensionless bending stiffness
κ̃ = κ/μl2

0 , where l0 = 1 is the average bond length in the
undeformed lattice [22]. We note that there are no excluded
volume interactions in our model. Furthermore, the network’s
topology is fixed during simulation, i.e., the crosslinks are per-
manently placed without any dynamic rearrangements. These
crosslinks are freely hinged, i.e., there is no bending penalty
for two crossing fibers on the same crosslink to rotate around
their axis.

Here we study the differential bulk modulus of diluted tri-
angular networks under the following bulk deformation tensor

�B(ε) =
[

1 + ε 0
0 1 + ε

]
, (2)

where ε is the extensional strain. By applying a bulk strain ε,
the network’s volume changes as V = V0(1 + ε)2. The initial
configuration is designed to have no elastic energy, i.e., the
rest lengths and angles in Eq. (1) are calculated from this
initial configuration. After applying an incremental strain, we
minimize the network’s elastic energy [Eq. (1)] using FIRE
[23]. We use periodic boundary conditions in both directions.
We stop the minimization algorithm after the total force on
each node is below 10−10. Figure 2(b) shows the differ-
ence between the minimum energy and the affinely deformed
configurations. The displacement fluctuations from an affine
response can be used to study the critical aspects of the me-
chanical phase transition in these networks (see Eq. 7). After
finding the minimum energy (mechanical equilibrium) con-

FIG. 2. (a) The diluted triangular lattice that is used to model
biopolymer networks. For every node in this model, we can define
three crossing fibers. To avoid system-spanning fibers, we randomly
remove one bond from every fiber. After the fiber cutting step, we
randomly dilute the lattice until the desired connectivity is obtained
(here z = 3.3). (b) The energy minimized configuration versus the
affinely deformed network: the original undeformed network (black),
the affinely deformed network under a bulk strain (gray), and the
minimized energy configuration (red). We note that these networks
are not under any shear deformation, we use a parallelogram as our
periodic simulation box for its simplicity to model triangular lattices.

figuration, we calculate the stress tensor and bulk modulus, as
explained below. The stress components are calculated by

σαβ = 1

2V

∑
i j

fi j,αri j,β , (3)

where V is the volume (area) of system, fi j,α is the α

component of the force exerted on node i by node j, and ri j,β

is the β component of the displacement vector connecting
nodes i and j. The summation is taken over a ll nodes in the
network. We find the differential bulk modulus B as

B = −V
∂P

∂V
= V

∂σ⊥
∂V

= 1

2
(1 + ε)

∂σ⊥
∂ε

, (4)

where the pressure of the system is P = −σ⊥ = − 1
d (

∑
i σii )

in d dimensions, which is two here. The volume of the system
is not preserved under an applied isotropic extension, i.e.,
V = V0(1 + ε)2 where V0 is the initial volume. Here we
define the differential bulk modulus in the deformed state of
the network, which is different from a prior definition of this
parameter [8] that is defined in the undeformed volume. We
note that we find the critical extensional strain εc for every
individual random sample using a bisection method. Unless
otherwise stated, the results are averaged over 40 random
samples. The error bars are the standard deviation for all
samples.

Results. Similar to the behavior observed under an applied
shear strain [9,20], we find that subisostatic central-force net-
works undergo a floppy to a rigid state at a critical extensional
strain εc that depends on the connectivity and geometry of
the system. At εc, the differential bulk modulus exhibits a
discontinuity Bc in agreement with findings of Refs. [26,27],
analogous to the behavior of the differential shear modulus at
the critical shear strain γc [13,24,26,28].

As shown in Fig. 3(c), the bulk modulus discontinuity at εc

appears to be larger than the shear modulus discontinuity at γc,
both with a decreasing trend as we increase the system size.
In the thermodynamic limit, we observe both finite Bc and Kc.
The jump in differential bulk modulus at εc is reminiscent of
the behavior of linear bulk modulus of particulate systems at
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FIG. 3. (a) Finitesize scaling analysis corresponding to Eq. (5)
for diluted triangular networks at z = 3.6 with central-force in-
teractions. In the critical region, we obtain f = 0.51 ± 0.03. The
distribution of f is shown as an inset. (b) Similar finitesize scaling
analysis of B as in (a) but at a different connectivity z = 3.3. In the
critical region, we obtain f = 0.34 ± 0.05. The distribution of f is
shown as an inset. (c) The ensemble average of the bulk modulus
discontinuity Bc for over 40 random samples of diluted triangular
networks at z = 3.3 and z = 3.6 plotted versus inverse system size.
The blue symbols, taken from Ref. [24], show the shear modulus dis-
continuity Kc for the same system under a simple shear. To compare
different values of z, we normalized these Bc and Kc values with the
line density of networks in the undeformed state [25]. We note that
for analyzing data in (a) and (b), we use the exponent ν calculated
from the hyperscaling relation f = 2ν − 2, which is derived in the
main text.

jamming [29,30] and generic Penrose tilings [31]. However,
for the present strain-controlled transition, this discontinuity is
not a reflection of a first-order transition. Rather, since strain is
a control variable analogous to temperature, this discontinuity
is more analogous to a discontinuity of the heat capacity in a
thermal transition at a critical point [20].

Near εc, we expect the following finitesize scaling relation
to capture the behavior of B in subisostatic central-force net-
works [24]

B − Bc = W − f /νF (εW 1/ν ), (5)

where ε = ε − εc, f is the bulk modulus scaling exponent
in the regime ε > εc, ν is the correlation length exponent,
and F (x) is a scaling function that is expected to increase
as x f for large arguments, in order to obtain a well-defined
thermodynamic limit. Although we use the same notation for
the scaling exponents as for networks under shear, we note
that the corresponding exponents may have different values.
Figure 3(b) shows the finite-size scaling behavior of B in
diluted triangular networks. In the critical region, we obtain
f = 0.34 ± 0.05 that is significantly smaller than the corre-
sponding exponent f = 0.79 ± 0.07 for the shear modulus.
By increasing the connectivity of the network to z = 3.6, we
find that f increases to 0.51 ± 0.03 [Fig. 3(a)]. We note that
the dependence of critical exponents on z for this transition
has also been observed under a shear deformation [9,32].
By plotting the bulk modulus discontinuity at εc, we also
find a decrease in Bc with increasing system size [Fig. 3(c)],
although with an apparent finite value in the thermodynamic
limit.

By introducing bending interactions, the subisostatic net-
works become stabilized in the small strain regime ε < εc

with a bulk modulus proportional to the bending stiffness
B ∼ κ . This also has the effect of moving the system away
from the critical singularity and suppressing the discontinuity
in B. The differential bulk modulus follows a Widom-like
scaling relation given by

B ≈ |ε − εc| f G±(κ/|ε − εc|φ ), (6)

for κ > 0, in which the branches of the scaling function G±
account for the bulk strain regimes above and below εc. Above
the critical strain, G+(x) is approximately constant for x � 1,
while below the critical strain, we expect G−(x) ∼ x for x �
1, so that B ∼ κ|ε − εc| f −φ . Near εc, however, continuity of B
requires G±(x) ∼ x f /φ for x � 1. Figure 4(a) shows B versus
ε for triangular networks at z = 3.3 with varying bending
stiffness. In the subcritical region, we find φ = 2.32 ± 0.06.
The data collapse of B corresponding to Eq. (6) is shown in
Fig. 4(b). For networks with z = 3.6, we obtain a Widom-like
collapse of the modulus (not shown) similar to Fig. 6(b) using
φ = 2.33 ± 0.1.

The scaling theory in Ref. [20] can be generalized to
athermal networks under an applied bulk strain ε. By follow-
ing a similar renormalization procedure with t = ε − εc and
B ∼ ∂2

∂t2 h(t, κ ), we derive the scaling relations in Ref. [20]
with f and φ corresponding to the scaling exponents under an
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FIG. 4. (a) The differential bulk modulus versus extensional
strain for diluted triangular networks at z = 3.3 and system size
W = 100 with varying bending rigidity κ indicated in the legend.
The data are averaged over 20 random samples. The inset shows the
scaling behavior of B in the subcritical region. Using the average
value of the exponent f obtained in Fig. 3(b), we find the exponent
φ for individual samples by fitting a power law to the modulus data
at κ = 10−5. (b) The Widom-like scaling collapse of the modulus
data in (a) using the average values of the exponents f and φ. The
distribution of the exponent φ calculated from fitting a power law to
the modulus data at κ = 10−5 is shown as an inset.

applied bulk strain. In order to test the hyperscaling relation
f = dν − 2, we measure the nonaffine fluctuations δ� under
extensional strains as

δ� = 1

Nl2
c δε2

∑
i

∥∥δuNA
i

∥∥2
(7)

in which N is the number of nodes, lc is the average bond
length, and δuNA

i = δui − δuA
i is the nonaffine component of

the displacement of node i due to the incremental strain δε.
Figure 5 shows the finitesize scaling collapse of δ� using the
obtained exponents f and φ. The correlation length exponent
ν here assumes the hyperscaling relation ν = ( f + 2)/2 	
1.17. The data collapse confirms that our scaling theory works
under an applied volumetric strain.

Discussion. In this work, we study the behavior of differ-
ential bulk modulus B of subisostatic fiber networks using a

FIG. 5. The finitesize scaling collapse of the nonaffine fluctu-
ations δ� under an applied bulk strain for diluted central-force
triangular networks at z = 3.3. The correlation length exponent ν is
obtained from the relation f = dν − 2.

diluted triangular model. Similar to previous studies of fiber
networks under shear [9,20], we observe that subisostatic
networks with central force interactions undergo a critical
transition from a floppy to a rigid state as we increase the
isotropic extensional strain. By approaching the critical exten-
sional strain from above, we find a power law scaling behavior
of B with a nonmean-field exponent that is much smaller than
the observed shear modulus exponent for the same model
[24]. By introducing finite bending rigidity κ , these networks
become stable in the linear regime with B ∼ κ . The stabilizing
effect of κ is evident in a collapse of our modulus data using a
Widom-like function with two branches (Fig. 4). By studying
the nonaffine strain fluctuations, we confirm that the recent
scaling theory that was derived for fiber networks under shear
also holds for a bulk deformation, although with different
exponents. Our results are in agreement with the observed
floppy-to-rigid transition in prior work on bulk modulus of
fiber networks [8]. Here, however, we focus on the critical
aspects of this transition. Furthermore, based on prior studies
on various fiber models in 2D and 3D [12,32–35], we expect
to observe an analogous behavior in a different 2D or 3D
system under a bulk strain.

Compared to the volume-preserving shear, the bulk rhe-
ological properties of fiber networks are more challenging
to measure experimentally. However, even for samples under
a simple shear deformation, the material can undergo local
volume exchange that can have nontrivial effects on its macro-
scopic properties. Further work is needed to investigate these
local (in)compressibility effects in biopolymer networks such
as collagen.
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