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Fibrous networks such as collagen are common in biological systems. Recent theoretical and exper-
imental efforts have shed light on the mechanics of single component networks. Most real biopolymer
networks, however, are composites made of elements with different rigidity. For instance, the ex-
tracellular matrix in mammalian tissues consists of stiff collagen fibers in a background matrix of
flexible polymers such as hyaluronic acid (HA). The interplay between different biopolymer compo-
nents in such composite networks remains unclear. In this work, we use 2D coarse-grained models
to study the nonlinear strain-stiffening behavior of composites. We introduce a local volume con-
straint to model the incompressibility of HA. We also perform rheology experiments on composites
of collagen with HA. We demonstrate both theoretically and experimentally that the linear shear
modulus of composite networks can be increased by approximately an order of magnitude above the
corresponding moduli of the pure components. Our model shows that this synergistic effect can be
understood in terms of the local incompressibility of HA, which acts to suppress density fluctuations
of the collagen matrix with which it is entangled.

INTRODUCTION

The mechanical stability of cells and tissues depends on
complex interconnected biopolymer networks such as the
cytoskeleton inside cells and the extracellular matrix out-
side cells. These networks are made of diverse structural
components that work together to support physiological
tasks such as cellular rearrangements, tissue growth and
signaling, thereby translating to a diversity in functions
and properties [1, 2]. Although the properties of the in-
dividual components of these composite materials vary,
they complement one another for overall enhanced me-
chanical properties. In extracellular matrices, stiff col-
lagen type I fibers are often found in a softer matrix
of flexible polysaccharides such as hyaluronic acid (HA).
As the most abundant protein in the human body, col-
lagen forms fibrillar networks that can bear high tensile
stresses [3, 4], while hyaluronic acid forms hydrogels that
are known to resist compression, e.g., for lubrication of
joints [1].

Although biopolymers are distinct in their chemical
structures, the macroscopic properties of their networks
can be largely independent of the microscopic details.
Recent studies have shown that the mechanics of these
networks can be understood in terms of the collective
behavior of simplified constituents. Specifically, coarse-
grained models based on elastic springs and bending
beams have been shown to lead to quantitative and pre-

dictive models of collagen network elasticity [3, 5–8]. An
important architectural aspect of such models is the aver-
age coordination number or connectivity ⟨z⟩ [9]. Collagen
networks have a connectivity between 3 and 4 [3, 10, 11],
which places them well below the isostatic threshold for
mechanical stability of zc = 2d, where d is the dimension-
ality, as originally identified by Maxwell [12, 13]. Thus,
such networks are sub-isostatic and their linear stabil-
ity at small strain must depend on more than spring-like
energies alone [14, 15]. In the case of collagen type I
networks, the linear elasticity can be understood to be
due to the bending resistance of the constituent fibers,
while this bending response can transition to a stretch-
ing response of fibers at large enough strain [3, 16–18].
Moreover, this transition has recently been shown to be a
second-order phase transition with rich critical behavior
[5].

In the linear elastic regime governed by bending
of fibers, the network strain must also be nonaffine,
characterized by significant local nonuniformity in the
strain field and a shear modulus far below that of a
purely stretching response [17–22]. This soft bending-
dominated regime can be understood to be due to the
nonaffine strain. Thus, suppression of nonaffinity should
generally result in network stiffening. Here, we study the
effect of local incompressibility on the mechanics of fiber
networks. In general, the strain field can be decomposed
into volume-preserving (shear-like) and compressive or
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dilational components. Under applied bulk strain, only
nonaffine deformations can change the local volume or
density. The relative importance, however, of the non-
affine dilational component for the elasticity of networks
such as collagen is not known. Given the important role
of HA that is known to affect tissue-level compressibility
of extracellular matrices, it seems likely that it may re-
duce nonaffine strain at the local level and hence affect
extracellular matrix mechanics.

Here, we develop a computational model to study the
role of local incompressibility on network mechanics and
we find that incompressibility alone can lead to approx-
imately 10-fold stiffening of fibrous networks in the lin-
ear elastic regime. We also demonstrate experimentally
a similar increase of the linear shear modulus of col-
lagen networks upon the addition of HA. Interestingly,
in contrast with prior computational models that have
shown similar stiffening effects of additional elastic inter-
actions such as bending resistance or additional Hookean
springs, we show that the effect of local incompressibility
is limited. Specifically, even in the limit of strong elastic
suppression of local compression, the linear shear modu-
lus remains below that for a purely stretching response
of the network. This is consistent with the presence of
both volume-preserving and dilational components of the
nonaffine response of bending dominated fiber networks
such as collagen in the linear regime. Our computa-
tional model also constitutes a computationally efficient
model for creating elastic networks with desired bulk and
shear moduli. This is in contrast to the common practice
of modeling networks with Hookean interactions, which
necessarily lead to comparable bulk and shear moduli for
regular or disordered structures, whereas most real mate-
rials have disparate bulk and shear moduli. Furthermore,
each of the components bring competing energies to the
table including fiber stretching, bending, matrix stretch-
ing and the resistance to compressive stresses leading to
a unique and non-trivial mechanical behavior. Hence,
we develop a coarse-grained composite model that ex-
plains the surprising mechanical properties of composite
systems under shear, often composed of soft and rigid
elements.

TWO-FLUID MODEL WITH INCOMPRESSIBLE
MATRIX

Collagen networks are embedded as a stiff macro-
molecular fiber matrix in an interpenetrating fluid with
very different mechanical properties. In the case of a
surrounding Newtonian liquid medium, the network re-
sponse can differ substantially on different length- or
timescales. On short timescales or on large length scales,
the fluid viscosity prevents significant relative motion of
network and fluid, rendering the composite system effec-
tively incompressible along with the liquid. The Poisson

ratio ν = 1/2 in this case. By contrast, at longer times,
a decoupling from the fluid can lead to compression and
significantly smaller Poisson ratio for the network. In
fact, for such a two-fluid system, there is no well-defined
Poisson ratio [23–27]. The poroelastic timescale τ for this
decoupling is expected to depend on the fluid viscosity
η and the network shear modulus G and pore size ξ, ac-
cording to τ ∼ ηr2/(Gξ2), where r is the characteristic
length-scale over which fluid transport occurs [28, 29].
Hyaluronic acid can itself form a relatively flexible

polymer hydrogel with a pore size approximately two or-
ders less than that of collagen [30]. Pure HA networks are
well-approximated as linear (visco)elastic up to strains
larger than for the linear regime of collagen networks
[31–34]. For collagen networks embedded in HA matri-
ces, in addition to a continuum viscous-like coupling, one
must account for a much stronger topological entangle-
ment of collagen and HA. For high molecular weight HA,
this topological entanglement can be expected to dra-
matically suppress relative motion of the network and
embedding fluid. We approximate the HA gel as an elas-
tic matrix with shear modulus Gm and much larger Lamé
coefficient λm on relevant timescales and length-scales
larger than the collagen pore size ξ, which is much larger
than that of HA. We thus modify the prior non-inertial
two-fluid model [27] equations of motion as

0 = Gm∇2u⃗m+(Gm+λm)∇⃗ ·(∇⃗ · u⃗m)−Γ(u⃗m− u⃗f ) (1)

and

0 = Gf∇2u⃗f + (Gf + λf )∇⃗ · (∇⃗ · u⃗f ) + Γ(u⃗m − u⃗f ), (2)

where um refers to the matrix displacement field and the
second equation refers to the corresponding fiber terms.
Here, Γ represents the coupling between the collagen fiber
network and the HA matrix. In principle, this coupling
is both viscoelastic and topological in nature, but we as-
sume it to be strong and dominated by topological con-
straints. Physically, this constraint suppresses the flow of
the HA matrix from one unit cell of the fiber network to
another. This may potentially dramatically reduce the
the nonaffine deformation of the collagen in response to
shear, as we explore below.

MODEL

To investigate the properties of composite net-
works comprising stiff collagen fibers embedded in soft
hyaluronic acid, we utilized a 2D triangular lattice as our
model, following many prior studies [15, 35–38]. Initially,
we generated a periodic triangular lattice of size W = 90
consisting of N = W 2 Hookean springs to model the HA
network. All the springs were directly cross-linked at the
nodal points. A section of the constructed network is
shown in Fig. 1. Importantly, since this structure has
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FIG. 1. A snapshot of the arrangement of the composite
network on a triangular lattice. The dotted red lines de-
pict an undiluted network representing the hyaluronic acid
matrix. The solid black lines illustrate a diluted triangular
network (⟨z⟩ = 3.3) analogous to the structure of collagen
and connected to the matrix at every node. A local volume
constraint of area rigidity, β is applied over sets of six trian-
gles or a full hexagonal lattice, as shown by the grey areas
in the diagram. In this system, the nodes are connected to
each other with harmonic springs of moduli µm = 10−5 and
µf = 1.0 which correspond to the moduli of the matrix and
fiber respectively. Additionally, the fibers have a low bending
modulus of κ = 10−4.

a coordination number or connectivity of z = 6, which
exceeds the isostatic threshold of zc = 4 in 2D [12, 13],
the response is expected to be nearly linear with both
Gm and λm proportional to µm. As has been noted, one
cannot account for the expected large compression mod-
ulus (i.e., λm ≫ Gm) with such a model. We can model
a large compression modulus by imposing a local area
constraint similar to what has been done, e.g., in prior
vertex models for epithelial tissues [39–42]. Importantly,
we add such a constraint not at the level of individual
triangles but for hexagons, as shown in Fig. 1, as we
explain below.

The resulting matrix hamiltonian is given by

Hmatrix =
µm

2

∑
ij

(lij − lij,0)
2

lij,0
+

β

2

∑
h

(Ah −Ah,0)
2

A2
h,0

(3)
where lij,0 = 1 represents the length of the ij
bond/spring in the relaxed state, lij is the current bond
length in the deformed state, Ah,0 is the initial relaxed
area of the hexagon over which the area constraint is be-
ing applied and Ah is the current area of the hexagon.
Here, β represents the Hookean-like strength of the ap-
plied local volume constraint, which can be expected to
determine the bulk modulus B of the resulting network.
We confirm this below. As shown in Eq. (3), the local
volume incompressibility of the matrix was modeled as a

quadratic energy cost due to the change in area, which
can also be understood as a penalty imposed when the
network moves away from the equilibrium area (here, in
2D) at a local level. To implement this local constraint,
we divided the matrix network into hexagonal unit cells
and applied the penalty in energy for each of these units.
Imposing an additional constraint onto hexagonal struc-
tures instead of each of the triangles that compose them
avoids volumetric locking and over-constraining the sys-
tem. When a structure is subjected to volumetric lock-
ing, it develops very high stresses and is devoid of all
floppy modes [43]. In other words, it would exhaust the
system from all of the degrees of freedom, curtailing node
movement. This would also be contradictory to our ul-
timate objective of constructing a composite model that
exhibits distinguishable shear and bulk moduli. In addi-
tion, using a hexagonal structure on a triangular archi-
tecture provides an added advantage of preserving rota-
tional symmetry, which is not the case with other regular
polygons of comparable vertex count.
The fibers were then added to the matrix using springs

of a higher stretch modulus, and a bending rigidity, κ.
To avoid the effect of spanning fibers, each of the fibers
were initially cut at a random bond. The fibers were
then randomly diluted by cutting random bonds until the
fiber network had an average sub-isostatic connectivity of
⟨z⟩ = 3.3, which is below the Maxwell isostatic threshold
of zc ∼ 2d = 4 (d dimensions) in 2D. Any dangling ends
(nodes with only one connection) that have no effect on
the mechanics of these networks were removed.
The matrix comprises a stretching energy and an en-

ergy resulting from local volume preservation. The fiber
energy includes stretching energy of the springs and a
bending energy calculated as the resistance to bending
between two nearest-neighbor bonds on the same fiber.
The Hamiltonian for the fiber networks can be written
as [9, 40],

Hfiber =
µf

2

∑
ij

(lij − lij,0)
2

lij,0
+

κf

2

∑
ijk

(θijk − θijk,0)
2

lijk,0

(4)
where the parameter, µm is the stretching modulus of the
matrix, lij,0 is the bond length prior to any deformation
of any bond between two nodes, lij is the current bond
length, µf is the stretching modulus of the fiber, κf is the
bending rigidity of the fiber, θijk,0 is the initial angle be-
tween the bonds ij and jk, θijk is the current bond angle

between bonds, lijk,0 =
lij,0+ljk,0

2 is an average of the rest
length of the two adjacent bonds under consideration,
Ah,0 is the initial area of the hexagon over which the area
constraint is being applied and Ah is the current area of
the honeycomb. β determines the strength of the applied
local volume constraint or the strength of resistance to
compression and is sometimes also referred to as volume
elasticity in confluent models [44]. Thus the total energy
of the composite system is the sum of the two aforemen-
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tioned individual components, Htotal = Hmatrix +Hfiber.
In order to obtain sufficient statistics, about 50 different
realizations were analyzed, and the ensemble average of
the parameters was computed across these samples.

To simulate the rheology of the composite, we ap-
ply quasi-static shear strain, and then find a mechani-
cally stable equilibrium configuration of the system. The
system is periodic in both directions and we use Lees-
Edwards boundary conditions to apply shear strain [45].
For each strain step, δγ, we first affinely deform the node
positions and then obtain the minimum energy configu-
ration of the system using FIRE [46]. The algorithm is
designed to stop when the maximum force on the nodes
reaches a value less than a tolerance value (we choose
to be 10−10), which serves as the stopping criteria. The
nonaffine node positions are determined as a result of
this structural relaxation after which the required macro-
scopic quantities such as the stress tensor are calculated
as [47],

σab =
1

2V

∑
⟨ij⟩

fa
ij(u

b
i − ub

j) (5)

where, a and b represent any two coordinates, i and j
are the nodes connected by a bond, fa

ij is the a compo-

nent of the force exerted on node j by node i, and ub
i is

the b component of displacement vector of node i. The
stress calculated in equation 5 quantifies the resistance to
stretching, bending and compressibility in different direc-
tions as a result of the applied external deformation and
the enforced energy constraints. To capture the nonlin-
earity in the mechanics and to compare with the rheol-
ogy of experimental systems, we compute the differential
shear modulus, K, defined as,

K =
dσ∥

dγ
(6)

where, σ∥ and γ are the shear stress and the applied
strain, respectively. To explore the physical implications
of β and to quantify its effect on the bulk modulus of the
matrix and composite, we measure the normal stresses at
an applied bulk strain, ϵ. Similar to shear strain, at every
step, we apply a small isotropic bulk strain to the com-
posite network and subsequently relax the system. We
compute the bulk modulus as a derivative of the normal
stress, σ⊥ i.e. B = 1

2 (1 + ϵ)dσ⊥
dϵ [48].

The parameter values are chosen to replicate collagen-
HA in physical settings. In a previous study of physical
systems, the ratio κ/µf for fibers was found to be directly
proportional to the fiber volume fraction, ϕ [49]. So,
to compare with experiments, values of κ/µf less than
10−3 are suitable, and for most purposes in this study,
we set µf = 1.0 and κ = 10−4. The matrix is a soft
elastic network with a low stretch modulus of µm = 10−5

relative to the the fiber stretch modulus. To evaluate the
effect of local incompressibility, β is varied to analyze

the system up to the physical limits discussed later in
this text.

RESULTS

Figure 2 illustrates the ability of the second term in
Eq. (3) to independently control the shear modulus and
bulk modulus of both the matrix and composite net-
works. Previous studies have achieved such a decoupling
by tuning the network’s microscopic structure [50, 51].
Here, the area constraint provides a simple yet robust
decoupling of the elastic moduli for a perfect lattice rep-
resenting the matrix and using only Hookean terms. By
increasing the area rigidity β, the shear modulus of the
matrix is unchanged, while the bulk modulus increases
linearly with β. This is consistent with an affine defor-
mation as expected for the full lattice with connectivity
above the isostatic threshold. It is noteworthy that the
shear modulus of the composite, combining Hmatrix and
Hfiber, is affected by the area rigidity β, suggesting that
the resulting deformation is not simply affine.
To confirm the presence of a local volume constraint,

we plot the area distribution of hexagons in the inset to
Fig. 2. This distribution is shown for two extreme cases
of vanishing and large area rigidity β, corresponding to
compressible and incompressible limits. As expected for
a local area constraint, the area distributions of hexago-
nal units are tightly distributed around their initial val-
ues for large β. It is noteworthy that local areas are
well-preserved even when the system is subjected to sub-
stantial shear strains.
The addition of external or internal energy via bend-

ing, prestress, or temperature fluctuations can stabi-
lize subisostatic fiber networks that would otherwise be
floppy [5, 52–54]. Likewise, the inclusion of area con-
straints produces a similar stabilizing effect, leading to a
non-zero shear modulus within the linear regime. How-
ever, as can be seen in Fig. 3, which shows stiffness as
a function of stain, the effect of the area rigidity β on
the resulting shear modulus of the composite is limited,
specifically with moduli that remain below the affine limit
(K of order unity here). This suggests that under shear,
the composite network is able to deform nonaffinely to
reduce stretching, even in the presence of the volume
constraint. For vanishing β, the fact that the composite
shear modulus greatly exceeds the shear modulus for the
matrix alone indicates that the elasticity is dominated
by the fiber (i.e., Hfiber above). Moreover, the fact that
the linear shear modulus for the composite lies well below
the stretching-dominated stiffness at high strain indicates
that the linear elasticity is bend-dominated, consistent
with prior simulations of such fiber networks [5, 9, 18]
that have shown this to be due to significant nonaffine de-
formations of the network. Interestingly, upon inclusion
of the area rigidity β > 0, the linear modulus increases,
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FIG. 2. Comparison of shear and bulk moduli of the matrix
and composite with varying strength of incompressibility. The
shear modulus of the matrix remains unchanged with differ-
ent values of β, while the bulk moduli varies proportionally
to β. Therefore, the two moduli of the network are decou-
pled and can be changed independent of each other and the
bulk modulus can be tuned only for a nominal change in the
linear shear modulus. (Inset) Area distribution (normalized,
P) of the hexagonal regions in the composite on which a local
volume constraint has been imposed. When a high level of lo-
cal incompressibility (shown in red) is applied, the resulting
distribution is significantly narrower compared to the distri-
bution without any local incompressibility constraint (shown
in blue). The red circle and the triangle represent the values
of bulk modulus and shear modulus of the matrix at β = 0.

eventually saturating for large β at a value still well be-
low that expected for a purely affine deformation. Thus,
although the area constraint appears to suppress some of
the nonaffine bending modes, substantial nonaffine de-
formation is still possible for locally volume preserving
networks.

The nonaffine movements of rigid fibers within the soft
matrix give rise to a collective synergistic effect, wherein
the linear shear modulus of the composite exceeds the
sum of the moduli of the individual fiber and matrix net-
works (inset of Fig. 3). This effect has been reported
in prior experiments on composite biopolymers as well
as several synthetic double networks [6–8, 55, 56]. Sev-
eral coarse-grained models have considered the solvent
as free-draining within a fibrous network [28, 57], which
can also lead to an effective volume constraint on short
timescales due to the viscous coupling of solvent and net-
work, together with the incompressibility of the solvent.
The timescale for this is determined by the solvent vis-
cosity and network pore size, as discussed above. In the
case of HA, however, since it forms an entangled mesh-
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FIG. 3. Effect of local incompressibility on the rheology
of the composite network. The differential modulus K versus
applied shear strain γ for different values of area rigidity, β on
the matrix alone (open symbols) and the composite (closed
symbols). (Inset) Linear shear modulus, G0 as a function of
β. Parameter values: µf = 1.0, µm = 10−5, κ = 10−4.

work with a much smaller pore size than collagen, it is
expected to remain incompressible on longer timescales.
Moreover, since the HA and collagen networks are topo-
logically entangled, the resulting volume constraint for
the collagen can persist for long times. The resulting ef-
fect of HA on composites with collagen therefore involves
an interplay between the nonaffine bending modes of the
collagen network with the local volume constraining ef-
fect of the HA.

To compare our simulations with experiment, we con-
ducted stress ramp measurements on interpenetrating
networks of collagen and HA (for details see appendix).
Consistent with our simulations, we observed a substan-
tial increase in the linear elastic modulus when colla-
gen and HA were combined, surpassing the individual
components’ moduli (see Fig. 4). This enhancement was
particularly prominent at lower concentrations of HA,
whereas the linear mechanics of HA predominated the
composite network stiffness at higher concentrations. Es-
timating the value of β in experimental setups presents
challenges, as it is difficult to isolate the shear modulus
of the HA matrix from the incompressibility effect. Our
simulations, however, facilitated the disentanglement of
this effect, shedding light on the contributions of each
component. Additionally, at high strains, the differential
moduli converge, aligning with the high strain behavior
observed in the simulations (see Fig. 3). Notably, the
composite systems exhibited significantly higher strain
tolerance to fracture compared to the pure collagen net-
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FIG. 4. Experimental results measuring for the shear of col-
lagen, HA and their composite. The differential modulus,
K, versus the shear strain for different compositions. Solid
lines show pure collagen (black) and composites. Dotted lines
show pure HA samples. The differential modulus converges
at high strain in each of the composite samples and increases
with increasing HA concentration at low strain. The linear
modulus of the composite is much higher than the sum of the
linear moduli of individual components for a low concentra-
tion of HA (2mg/mL). At higher concentrations of HA, the
linear modulus of HA dominates, resulting in comparable lin-
ear moduli of the composite and pure HA system.

work. Furthermore, the onset strain for nonlinearity was
much larger in the collagen-HA composites compared to
pure collagen networks. We speculate that collagen poly-
merization within the HA matrix may lead to reduced
collagen connectivity or variations in the thickness of
collagen fiber bundles. Nevertheless, it is evident that
the linear region clearly demonstrates a synergistic effect
consistent with reduced compressibility.

In order to understand the effect of β on the rheology of
composite networks, it is crucial to analyze the interplay
of various energies involved. Figure 5 shows the behavior
of the ratio of fiber stretching energy, Eµ, to the total en-
ergy, Etotal, versus strain when varying area rigidity, β.
When β is small (β < κ), the composite primarily relaxes
through its soft bending modes within the linear regime.
Consequently, the stretching modes of the fibers remain
relatively inactive, as evidenced in Fig. 5. However, as β
increases, the cost associated with the nonaffine bending
modes rises since they entail some change in the local
density (and, thus, the areas of the hexagonal units in
Fig. 1). As β increases, avoidance of local volume (area)
change necessitates increasing stretching of the fibers, as
is reflected in the increasing ratio of Eµ/Etotal. How-
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FIG. 5. Energy contributions to the total energy due to in-
compressibility, Etotal (inset) and stretching of the fibers, Eµ

with varying β. For β ≳ 10−2, the stretching of fibers is in
tandem with values of nonaffinity.

ever, for large values of β, the linear modulus appears to
saturate to a maximum value (inset of Fig. 3). This is
consistent with a fully incompressible network, for which
any further increase in area rigidity becomes irrelevant.
Interestingly, as noted above, the maximal linear mod-
ulus still lies below that of a purely affinely deforming
network, suggesting the presence of remaining nonaffine
deformations that reduce the shear modulus below that
for uniform (affine) strain while still preserving the local
density of the network.
To gain insights into the interplay of area rigidity with

nonaffine deformation, we quantify the nonaffinity fluc-
tuations, given by [15]

Γ =
⟨||δuNA||2⟩

l20γ
2

, (7)

as a function of strain. Here, δuNA = u − uaffine rep-
resents the difference between the current node displace-
ments and the corresponding affine displacements at the
applied strain γ and l0 is the average initial bond length,
which is 1 in our model. The brackets denote averaging
over all nodes of the network. Figure 6 shows this non-
affinity versus strain for varying the area rigidity β. For
small values of β ≲ 10−2, little change in Γ is seen. This
is consistent with the prior observation of weak stretching
and soft bending modes that account for the nonaffine de-
formation [47, 58]. The presence of the soft background
matrix does not significantly alter this behavior. With
increasing β ≳ 10−2, the increase in Γ is consistent with
the increase in stretching noted earlier in Fig. 5.
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FIG. 6. Nonaffinity and differential nonaffinity (inset) of the
composite with varying area rigidity β. The enhancement in
the nonaffine fluctuations with β in the linear region explains
the rise in linear shear modulus (see Fig. 3).

It has previously been observed that the nonaffinity
can be identified with critical fluctuations of a second-
order-like transition as a function of strain. To analyze
this, we consider the differential measure of nonaffine dis-
placements, as introduced in Ref. [5]

δΓ =
⟨||δuNA||2⟩

l20δγ
2

, (8)

where the nonaffine motions of nodes are measured under
an infinitesimal strain step δγ. As shown in the inset of
Fig. 6, the criticality of composite networks is apparent
in the sharp peak in δΓ for small values of β ≲ 10−2 near
the critical strain γc ≃ 0.25. Here, the weak area con-
straint does not significantly affect the criticality. For
values of β ≳ 10−2, however, the criticality is strongly
suppressed, with a broadening peak in δΓ, spreading to
lower values of strain. This is also consistent with the ap-
pearance of increasing stretching of fibers in this regime,
since the strong critical signatures have been shown to
be associated with a sharp transition from bending- to
stretching-dominated regimes [5, 59]. Again, this behav-
ior saturates for large values of β, consistent with a fully
incompressible limit that is insensitive to the value of the
area rigidity.

CONCLUSION

Here, we have shown theoretically how a local vol-
ume constraint can lead to a synergistic enhancement

of the linear shear modulus in composites of fibers and
flexible polymers, with a composite modulus of approxi-
mately ten times that of the sum of the individual moduli
for the two components alone. Our model is supported
by experiments on collagen-hyaluronan (HA) composites
and can also explain other recent experiments on similar
composites [6–8, 55, 56]. While we find good qualitative
agreement between theory and experiment for the linear
modulus, more work will be needed to compare the full
nonlinear elasticity. So far, we see a clear suppression
of the main feature associated with mechanical critical-
ity, namely the rapid increase in K with strain for the
pure collagen sample in Fig. 4, consistent with a strong
local volume constraint (large β) in our model. However,
the apparent softening of the composite response rela-
tive to the pure collagen sample above 10% strain is not
expected within our model. In future work, it will be
interesting to vary the HA concentration more systemat-
ically at and below 2 mg/mL. It may also be interesting
to reduce the HA molecular weight to weaken the effect of
topological entanglement with collagen, thereby reducing
the volume constraint for the collagen network.

Theoretically, the addition of the volume constraint
with corresponding rigidity β is distinct from prior work
showing that additional interactions, such as springs or
bending rigidity of fibers, can lead to a purely affine re-
sponse [6, 19–21, 58]. Here, the additional rigidity to
volume change can stiffen the composite gel, but not to
the extent of a purely affine response. As we have shown,
this corresponds to remaining non-affine fluctuations that
are possible even in the presence of a strong volume con-
straint: i.e., even volume-preserving non-affine deforma-
tions can soften the response of a gel. This is also an
area worthy of future study. It may be interesting and
fruitful to decompose the non-affine displacement field
into divergence-free or volume-preserving and curl-free
or potential contributions.

Finally, the model represented by Eq. (3) can provide a
computationally efficient way to model systems with in-
dependent control of bulk and shear moduli, using purely
Hookean contributions in the Hamiltonian. Ordinarily,
any structure formed with simple springs will lead to a
Poisson ratio ν = 1/4 in 3D, corresponding to a fixed ra-
tio of bulk to shear moduli of B/G = 5/3 in 3D [60, 61].
(In 2D, B/G = 2 for spring networks.) In fact, for any
system with purely central-force interactions, ν = 1/4
in 3D. Such systems are known as Cauchy solids. Thus,
with purely central-force interactions, it is not possible
to model incompressible materials, for which B ≫ G and
ν = 1/2 in 3D or ν = 1 in 2D.

Although specific values of B, G and ν are not neces-
sarily well-defined for composite materials, even isotropic
ones, HA hydrogels should be treated as incompressible
on the timescale of experiments such as those presented
here. This incompressibility of the gel arises from the
incompressibility of the aqueous solvent, together with
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the viscous coupling of solvent and polymer, which be-
comes very strong on experimentally-relevant timescales
due to the small pore size of HA. For composites of HA
plus collagen, as we have discussed above, the incom-
pressibility of the collagen network depends also on the
topological entanglement of HA with collagen. In prin-
ciple, this makes the collagen meshwork incompressible
even for very large pores formed by the collagen fibers.
The model proposed here can be the basis for efficient
future simulations of extracellular matrix composites in
this limit.
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APPENDIX

Materials and methods

Experimental rheology tests were performed on Type
I bovine (atelo)collagen (Advanced BioMatrix, Fibri-
Col(®) solution, stock concentration 10 mg/ml in 0.1N
hydrochloric acid, Lot 8393) and Tyramine modified
hyaluronic acid (Tyr-HA; provided by Matteo D’Este,
AO Research Institute Davos, MW 250 kDa, degree of
substitution 11%, lyophilized). Tyr-HA was hydrated
in PBS (Sigma Aldrich) with a final concentration of
0.2 U/ml horseradish peroxidase (HRP; Sigma Aldrich,
stored at -20°C and thawed before use). The final Tyr-
HA solution concentration was 2 mg/ml, 4 mg/ml or
8 mg/ml. The Tyr-HA solution was left overnight, ro-
tating in a tabletop revolver to dissolve the Tyr-HA in
PBS to fully hydrate at 4°C. On ice, collagen was added
to the Tyr-HA solution to a final concentration of 1.5
mg/ml. The composition of the final buffer solution was
PBS (140 mmol/l NaCl, 10 mmol/l phosphate buffer, 3
mmol/l KCl), 0.2 U/ml HRP and was set to pH 7.3 by
the dropwise addition of 0.1 M NaOH. Finally, hydro-
gen peroxide (Sigma Aldrich) was added to initiate the
cross-linking of the Tyr-HA at a final concentration of
1.5 mmol/l. The solution was mixed by pipetting the
solution up and down 10 times then transferring to the
bottom plate of the rheometer. This mixing had to be
performed quickly so that the sample did not gel in the

pipette tip. For the rheology we used an Anton Paar
Physica MCR 501 rheometer (Anton Paar, Graz, Aus-
tria) with a stainless steel cone-plate geometry (30 mm
diameter, 1 degree angle). The sample was surrounded
by mineral oil to prevent solvent evaporation. The tem-
perature was set to 37°C using a thermostatic hood and
a Peltier element (H-PTD200, Anton Paar, Graz, Aus-
tria). After loading the sample, the sample-air interface
was sealed with heavy mineral oil (Sigma Aldrich, lot #
MKCK4437) and the sample was allowed to polymerize
for 1 hour for pure Tyr-HA samples and 2 hours for sam-
ples containing collagen. A shear stress ramp from 0.01
Pa to 20 kPa with 10 points per decade, logarithmically
spaced, was applied to measure the non-linear rheology of
each sample. The measured shear stress and shear strain
were converted to differential elastic moduli by taking a
numerical gradient of shear stress with respect to shear
strain using numpy.
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