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At zero temperature, spring networks with connectivity below Maxwell’s isostatic threshold un-
dergo a mechanical phase transition from a floppy state at small strains to a rigid state for applied
shear strain above a critical strain threshold. Disordered networks in the floppy mechanical regime
can be stabilized by entropic effects at finite temperature. We develop a scaling theory based on
a real-space renormalization approach for this mechanical phase transition at finite temperature,
yielding relationships between various scaling exponents. Using Monte Carlo simulations, we verify
these scaling relations and identify anomalous entropic elasticity with sub-linear T -dependence in
the linear elastic regime. While our results are consistent with prior studies of phase behavior near
the isostatic point, the present work also makes predictions relevant to the broad class of disor-
dered thermal semiflexible polymer networks for which the connectivity generally lies far below the
isostatic threshold.

Fibrous materials are common in physiological systems
that are responsible for the mechanical stability of cells
and tissues. Examples include the interconnected net-
work of biopolymers in the cytoskeleton and in the ex-
tracellular matrix. The linear elasticity of these biopoly-
mer networks depends not only on the properties of the
individual fibers but also on network architecture and
specifically their connectivity, characterized by the lo-
cal coordination number z. The key role of connectivity
on the stability of mechanical structures has been well-
established by Maxwell [1] who showed that networks
with Hookean, central-force (CF) interactions are linearly
stable only when their average connectivity exceeds the
isostatic threshold zc = 2d, where d is dimensionality.
For physiological networks, however, this rigidity tran-
sition is not relevant, as their connectivity lies well be-
low this threshold [2–4] and network stability depends on
non-CF interactions such as fiber bending rigidity [5–12].
Recent theory and experimental studies have identified a
strain-controlled rigidity transition for networks of fibers
such as collagen, e.g., for shear strains above a critical
threshold γc [13]. Moreover, this transition exhibits rich
critical phenomena, including scaling behavior and non-
mean-field effects [14–23]. But, these prior studies of fiber
systems have been limited to athermal networks and lit-
tle is know of the effects of thermal fluctuations that can
be expected to stabilize mechanically floppy systems and
lead to entropic elasticity [24–27]. Prior simulations and
mean-field theory have pointed to critical signatures for
the isostatic transition at finite temperature T [28, 29].
But, the thermal effects remain unclear for the the strain-
controlled transition in sub-isostatic systems, including
the broad class of semiflexible polymers.

Here, we study the critical behavior of the strain-
controlled rigidity transition at finite temperature by per-
forming Monte Carlo (MC) simulations of central-force
spring networks. In the linear regime, we find an anoma-
lous entropic elastic regime that extends throughout the

!

"

# ~%!

# ~%"

# ~%#

St
ra
in

Connectivity
"$

(a)
!

"

# ∼ !

# ∼ !!

""

# ∼ !#

# ∼ !$

Strain

Te
m
pe
ra
tu
re

(b)

FIG. 1. Schematic phase diagrams of disordered spring net-
works in the limit of low temperature T (a) and finite T (b).
The shear stiffness K exhibits different scaling behavior with
temperature based on the network’s connectivity z and the
applied shear strain γ. In the limit of small γ, K reduces to
the linear shear modulus. (a) With increasing strain, mechan-
ically floppy (subisostatic) networks with z < zc crossover
from entropic to enthalpic, stretching-dominated behavior in
the vicinity of the T = 0 phase boundary (dashed arrow). (b)
With increasing T , critical behavior extends to a broad zone
about γc in which the T -dependence changes.

regime with γ < γc in Fig. 1b. Here, the linear shear
modulus varies with T as G ∼ Tα, with an exponent
α ≃ 0.8. Along the line at γ = 0, these results are
consistent with Ref. [28]. For shear strains γ > γc(z),
the network’s elastic response becomes independent of
temperature, consistent with the stretching-dominated
regime previously seen for connectivities z > zc. We
also develop a scaling theory that not only provides a
theoretical framework for these results but also allows
us to identify scaling relations among various critical ex-
ponents, which we also test here. We also quantify the
network’s fluctuations that can have either thermal or
athermal, nonaffine origin. We find a peak in the fluctu-
ations near the critical strain, analogous to prior results
for athermal systems. In contrast to temperature con-
trolled phase transitions, temperature T acts as a stabi-
lization effect or field and moves the system away from
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criticality, analogous to quantum critical points at zero
temperature [30]. Similar to such systems, we also find
that the effects of criticality extend to finite temperature
as illustrated in Fig. 1a all along the critical line given
by γc(z).
Scaling theory —The nonlinear mechanics of fiber net-

works at zero temperature has been explained in terms
of a bending-dominated to a stretching-dominated criti-
cal transition that occurs at a critical shear strain γc(z),
which depends on the network’s connectivity z and ar-
chitecture [13–15, 31, 32]. We develop a scaling theory
inspired by real-space renormalization arguments intro-
duced by Kadanoff [33]. The critical signatures of this
strain-controlled mechanical phase transition have been
recently examined using a real-space renormalization ap-
proach and finite-size scaling methods and recently ex-
tended to athermal networks [18, 20, 21]. For finite tem-
perature T , however, we consider the system’s free energy
F per network element, e.g., mesh or strand. As with
other critical phenomena, we focus on the singular part
FS as a function of reduced strain t = γ− γc and T , not-
ing that strain γ is the control variable for the transition
at t = 0 and T is an auxiliary field that moves the sys-
tem away from the (athermal) critical point. We expect
critical signatures such as fluctuations and singularities
as both t and T → 0.
Under rescaling of the system by a factor L, we expect

the system to exhibit a homogenous free energy density
near criticality, for which

F (t, T ) = L−dF (tLx, TLy), (1)

where d is the dimensionality and x, y > 0 are funda-
mental exponents. The mechanical quantities such as
shear stress σ and the shear stiffness or differential shear
modulus K are obtained by taking the first and second
derivatives of F with respect to strain, i.e., t. Thus,

K =
∂σ

∂γ
∼ ∂2F (t, T )

∂t2
∼ L−d+2xF2,0(tL

x, TLy) (2)

where Fn,m refers to the nth partial derivative with re-
spect to t and mth partial derivative with respect to T of
F . Since the rescaling factor L is an arbitrary parameter,
we can substitute L = |t|−1/x in Eq. (2). This identifies
the correlation length exponent ν = 1/x and leads to a
scaling function

K = |γ − γc|fG±(T/|γ − γc|ψ), (3)

where f = dν − 2 and ψ = yν. Moreover, to ensure
the continuity of function F2,0(±1, s) at the critical point
t→ 0, we must have F2,0(±1, s) ∼ sf/ψ. This power law
relation provides the T−dependence behavior of K at γc,
i.e., K(γc) ∼ T β , where β = f/ψ.
Model —In order to study the effects of temperature

in fiber networks, we perform Monte Carlo simulations in

2D systems using the triangular network model. Starting
from a full triangular network with z = 6, we randomly
cut bonds until a desired subisostatic connectivity z < zc
is reached. We remove the dangling nodes (nodes with
only one connection) since they have no mechanical con-
tribution to the network’s response. Here, we simulate
networks at an average connectivity of z = 3.3. A small
section of such model is shown in the Supplemental Ma-
terials [34].
Because we aim to explore thermal fluctuations as a

stabilization effect, the network’s elastic energy is limited
to central force interactions only, i.e., there is no bending
energy in our models. The energy is given by

E =
µ

2

∑
⟨ij⟩

(lij − lij,0)
2

lij,0
, (4)

where lij,0 and lij are the initial and current bond length
between nodes i and j, respectively, and µ is the stretch-
ing stiffness of the bonds. The summation is over all
nodes in the network. We note that there is no non-
bonded interactions such as excluded volume effects in
our model, i.e., the springs can potentially overlap during
simulation. The macroscopic volume-preserving shear
strain γ is applied in the x−direction using the following
deformation tensor

Λ(γ) =

[
1 γ
0 1

]
, (5)

To minimize the edge effects, we use periodic boundary
conditions in all directions. Furthermore, we utilize Lees-
Edwards boundary conditions [35] in order to shear our
systems. The stress components are calculated as follow-
ing [36]

σαβ =
1

2V

∑
ij

fij,αrij,β (6)

where V is the volume (area) of the system, fij,α is the
α component of the force exerted on node i by node j,
and rij,β is the β component of the displacement vector
connecting nodes i and j. The summation is taken over
all nodes in the network.
For a system with N nodes in a volume V , the MC sim-

ulations are performed in the canonical (NV T ) ensemble.
We fix the stretching stiffness µ = 1 in our simulations
and vary the reduced temperature T ≡ kBT/µl

2
c , where

kB is the Boltzmann constant and lc = ⟨lij,0⟩ is the av-
erage initial bond length in networks, which is 1.0 in our
triangular lattice. After applying a shear strain to the
initial network, we first find the minimum energy config-
uration at zero temperature using FIRE [37]. Starting
from this minimum energy state, we let the system reach
its equilibrium configuration at the desired temperature
T by running at least τeq = 107 MC steps. In our net-
works, a Monte Carlo move is attempted by displacing
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all nodes randomly and accepting or rejecting the move
based on the Metropolis algorithm [38, 39]. The size of
trial moves is chosen to yield an acceptance ratio of 50%.
By tracking the network’s energy and shear stress versus
the number of MC moves, we confirm that this equilibra-
tion step is completed [34]. We calculate average values
of energy and stress components by running simulations
over τrun = 10 τeq MC steps. After finding the average
shear stress for a range of strain values, the stiffness K
can be obtained as [28]

K =
∂σ

∂γ
, (7)

where σ is the average shear stress calculated from the
MC simulations. Unless otherwise stated, our data are
an ensemble average of 10 different random samples.

Results — We first study the behavior of internal pres-
sure P for thermal networks as a function of shear strain
and temperature. At every shear strain γ for a network
at temperature T , we calculate the pressure as

P =
NT

V
− 1

d
(
∑
i

σii), (8)

where N is the number of nodes, T is temperature in
reduced units, V is the volume of the system, d is di-
mensionality, and σii are the normal components of the
stress tensor in Eq. (6) that are averaged over MC sim-
ulations. The first term in this equation is due to the
ideal gas contributions of the nodes and the second part
comes from the potential interactions. As shown in Fig.
2, we find that thermal networks are under tension, i.e.,
P < 0. As we increase γ, the potential energy between
the nodes increases, which results in a larger absolute
value of P (Fig. 2). The dependence of pressure versus
temperature is shown in the inset of Figure 2 for five dif-
ferent values of γ. In the linear regime where γ < γc, we
find that the magnitude of P is linearly increasing with
T , i.e., the system’s pressure is dominated by the ideal
gas effects. This is in agreement with Ref. [28]. As we
increase γ close to γc, however, the T -dependence of P
becomes sublinear. At very large strains, pressure has no
temperature dependence (inset of Fig. 2).

Figure 3a shows the shear stiffness K as a function of
shear strain γ for various reduced temperatures T . In
the small strain regime, as T increases, the network stiff-
ness increases with an anomalous T -dependence expo-
nent of 0.8. This anomalous entropic elasticity is consis-
tent with prior results for the linear shear modulus [28],
although we observe this throughout the (central-force)
floppy region indicated by blue in Fig. 1a. For strains
beyond γc, the network’s response becomes independent
of temperature because of highly stretched bonds. This
mechanical response depends only on the network struc-
ture and strain magnitude. At the critical strain, on the
other hand, we find that the stiffness exhibits a differ-
ent anomalous scaling behavior with K ∼ T 0.4 (inset

FIG. 2. Pressure as a function of shear strain for diluted
triangular networks with z = 3.3 and varying temperature.
The lateral system size is W = 50. The inset shows the
behavior of P versus T at five different strain values. The
lowest data points are in the linear regime (γ < γc), the next
one is at γc. The upper three data sets are for large strains
where γ > γc.

(b)(a)

FIG. 3. (a) Shear stiffness or differential shear modulus of
diluted triangular networks at z = 3.3 versus strain for various
temperatures as indicated in the legend. The system size is
W = 50 here. Inset: shear modulus versus temperature at
four different shear strains: the lowest curve is in the linear
regime where γ < γc, the second curve is at γc. The upper two
data sets are for large strains where γ > γc. (b) The Widom-
like collapse of the data in (a) using the critical exponents
f = 0.76 and ψ = 2.35.

of Fig. 3a)) similar to prior results and mean-field pre-
dictions at the isostatic point at zc and γ = 0 in Fig.
1a[28, 29]. By estimating the critical exponents f and
ψ, we collapse the modulus data in Fig. 3b according to
the scaling function in Eq. (3). The exponent f is found
from the supercritical regime γ > γc at zero tempera-
ture, where K − Kc ∼ |γ − γc|f . For this system size,
we find f = 0.76 ± 0.14. We select the value of expo-
nent ψ that leads to the optimal collapse of our data.
The apparent deviation observed in the regime close to
γc of this collapse is related to the finite size effects in
our simulations; if the correlation length becomes com-
parable or larger than the system size, which can occur
for strains close to the critical point, then the simula-
tions are incapable of capturing the critical effects [20].
These exponents are in good agreement with our derived
relation K(γc) ∼ T f/ψ.

To explore entropic elasticity in these thermal net-
works, it is informative to identify the entropic contribu-
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tion to the stress and its scaling behavior. We extend the
scaling theory above to identify entropic effects more di-
rectly by taking derivatives with respect to T . Denoting
the system’s entropy as S and noting that F = E − TS,
we can divide the stress contributions in two parts as

σ =
1

V

∂F

∂γ
=

1

V

∂E

∂γ
− T

V

∂S

∂γ
, (9)

where the first term is the enthalpic contribution σE and
the second term is the entropic part σS . In a canonical
ensemble, we have S = −(∂/∂T )F [40]. Classic entropic
elasticity is characterized by stress and moduli that scale
linearly with T , e.g., for which σ = σS and one should
observe a T -independent behavior of σS/T . In our di-
luted disordered networks, however, σS/T [28, 34] shows
a strong dependence on temperature (Fig. 4a). As we
approach the critical strain, σS/T exhibits a diverging
behavior at low temperature. This is consistent with our
scaling theory, where the entropic stress is expected to
behave as

σS = T |t|f−ψ+1F1,1(±1, T/|t|ψ). (10)

At γ = γc, continuity of this requires that σS ∼ T (f+1)/ψ.
Together with the previously identified exponents f ≃
0.76 and ψ ≃ 2.35, this prediction can account for the
anomalous T−dependence near the critical point in Fig.
4a and b. Specifically, at the critical strain, our sim-
ulations revealed that σS follows a power law scaling
with temperature, with an exponent of 0.7. In the linear
regime, however, the entropic contribution is dominant
[34] and σ = σS and K ∼ Tα, where G−(s) ∼ sα (Fig.
1a), which is also consistent with what we observe in Fig.
4b.

(b)(a)

FIG. 4. (a) The entropic stress σS scaled with temperature
versus shear strain in diluted triangular networks at z = 3.3.
(b) The scaling behavior of σS versus temperature in the lin-
ear regime (blue circles) and at the critical strain (red dia-
monds).

The anomalous temperature dependence of shear mod-
ulus in the linear regime is due to the highly disordered
nature of these diluted structures. Performing similar
MC simulations on 1D chains of springs (with connec-
tivity z = 2) in a periodic box results in an expected
entropic elasticity, i.e., K ∼ T , as has been shown before
[28]. To gain insight into the sublinear dependence of K

on temperature at the critical strain, we chose to investi-
gate the honeycomb lattice model without any distortion.
Due to its symmetry, this model exhibits γc = 0.0 [14],
i.e., honeycomb lattice is critically stable in the linear
regime. By studying the behavior of regular honeycomb
networks at various temperatures, we see an anomalous
exponent of 0.5, which is lower than the corresponding
exponent in diluted triangular networks [34]. This ob-
servation can be explained in a mean-field like theory at
finite T . Ref. [29] shows that the mechanical behavior
of linear shear modulus of diluted triangular and square
lattices can be captured using an analytic theory, which
gives the correct mean-field exponents. This K ∼ T 0.5 in
honeycomb model resembles the behavior of shear modu-
lus in diluted triangular networks near their critical con-
nectivity [28, 29].
One of the most striking features of a critical phase

transition is the divergence of fluctuations near the crit-
ical point. Following Ref. [41], we calculate these fluctu-
ations in our thermal networks as

δΓ =
⟨(u− uaff)2⟩

ℓ2cδγ
2

, (11)

where the bars indicate MC averages and the angular
brackets represent the averages over nodes and random
samples, ℓc is the average initial position of the bonds
(which is 1.0 in lattice models), δγ is the imposed strain
step, uaff is the affine location of the node’s position
that was obtained using the MC averages of the previous
strain step, and u is the instantaneous position of the
node during current MC simulation run. For low values
of T , δΓ exhibits a peak at the critical strain (Fig. 5). At
high temperatures, however, the system moves further
from criticality and the large thermal fluctuations sup-
press the critical effects in this strain-controlled transi-
tion, thus, the peak vanishes. For T = 0, the fluctuations
are suppressed, as expected for finite-size effects. We
also note that the apparent scaling behavior of δΓ ∼ γ−2

away from γc is a trivial effect of our definition in Eq.
(11) (This is shown in Fig. 5b). By examining the fluc-
tuations near γc, we confirm that the finite temperature
effects smear out the criticality in these disordered sys-
tems, analogous to zero-temperature criticality in quan-
tum systems [28, 30].
Conclusions — Our results show that thermal fluctua-

tions can stabilize mechanically floppy networks in a way
similar to the addition of bending or other interactions.
We also find anomalous entropic elasticity with a corre-
sponding exponent α ≃ 0.8 of T throughout the regime
of strains γ < γc. This is quantitatively consistent with
prior simulations of the linear (small strain) regime [28]
and qualitatively consistent with a prior mean-field the-
ory for which the (mean-field) exponent α = 1 [29]. This
anomalous entropic elasticity with exponent α ≃ 0.8 is,
however, only expected for systems that are sufficiently
far from criticality. In the vicinity of the critical line in
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(a) (b)

FIG. 5. (a) The fluctuations calculated from Eq. (11) as a
function of strain in diluted triangular networks with z = 3.3
and varying temperature. At T = 0, these nonaffine fluctua-
tions exhibit a peak at the critical strain. As the temperature
increases, the mechanical criticality of the system becomes
less pronounced. (b) The same data in (a) that are scaled
with the applied strain magnitude.

Fig. 1a, a smaller exponent β close to 1/2 is observed.
This is similar to what has been reported near the iso-
static point [28, 29]. Ref. [42] also reports an expo-
nent close to 1/2 in similar networks in the linear elastic
regime. We note, however, the small values of critical
strain (γc ≃ 0.01) apparent in that work. The reported
T 1/2 behavior may reflect behavior similar to what we
see for Honeycomb networks [34] with vanishing γc. If
so, this would suggest that for simple shear and for net-
works with larger γc, the authors of Ref. [42] may also
observe a larger exponent comparable to α ≃ 0.8.

The observed anomalous temperature dependence is
closely related to the behavior of entropic contributions.
We find that the entropic stress σS dominates the re-
sponse in the linear regime albeit with a sublinear T -
dependence. However, our results also suggest that such
singular signatures of criticality associated with the tran-
sition in Fig. 1 may be dominated by non-singular ther-
mal effects such as for the pressure in Fig. 2. Fundamen-
tally, shear stress is insensitive to ideal gas-like contribu-
tions arising from thermal fluctuations. Thus, in order
to test these predictions experimentally, it will be im-
portant to focus on volume-preserving simple shear, as
is the case with most rheometers. Similarly, direct ther-
mal signatures such as the heat capacity may not exhibit
singular behavior that is apparent, e.g., when studying
quantities corresponding to derivatives of the free energy
with respect to shear.

Although we have focused on networks of Hookean
springs, our results should also apply to the broad class
of semiflexible polymer networks such as those of cy-
toskeletal polymers [43–45] or related synthetic networks
[46, 47], although whether bending or thermal effects
dominate can be expected to depend on the thermal per-
sistence length ℓp and network mesh size [28]. It would
also be interesting to explore whether other non-thermal
fluctuation phenomena, such as active stress fluctuations
due to molecular motors in cytoskeletal networks [48–52]
may also lead to qualitatively similar fluctuation stabi-
lization and possibly even a phase diagram similar to Fig.

1a.
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ical Review E 98, 062411 (2018), publisher: American
Physical Society.

[18] J. L. Shivers, S. Arzash, A. Sharma, and F. C. MacKin-
tosh, Physical Review Letters 122, 188003 (2019).

[19] M. Merkel, K. Baumgarten, B. P. Tighe, and M. L. Man-
ning, Proceedings of the National Academy of Sciences
116, 6560 (2019).



6

[20] S. Arzash, J. L. Shivers, and F. C. MacKintosh, Soft
Matter 16, 6784 (2020).

[21] S. Arzash, J. L. Shivers, and F. C. MacKintosh, Physi-
cal Review E 104, L022402 (2021), publisher: American
Physical Society.

[22] O. K. Damavandi, V. F. Hagh, C. D. Santangelo, and
M. L. Manning, Physical Review E 105, 025003 (2022).

[23] E. Lerner and E. Bouchbinder, Soft Matter 19, 1076
(2023), publisher: Royal Society of Chemistry.

[24] P.-G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, NY, 1979).

[25] M. Plischke and B. Joós, Physical Review Letters 80,
4907 (1998).

[26] M. Plischke, D. C. Vernon, B. Joós, and Z. Zhou, Phys-
ical Review E 60, 3129 (1999).

[27] O. Farago and Y. Kantor, Physical Review Letters 85,
2533 (2000).

[28] M. Dennison, M. Sheinman, C. Storm, and F. C. MacK-
intosh, Physical review letters 111, 095503 (2013).

[29] L. Zhang and X. Mao, Physical Review E 93, 022110
(2016).

[30] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cam-
bridge University Press, Cambridge, 2011).

[31] A. Sharma, A. J. Licup, R. Rens, M. Vahabi, K. A.
Jansen, G. H. Koenderink, and F. C. MacKintosh, Phys-
ical Review E 94, 042407 (2016).

[32] A. J. Licup, A. Sharma, and F. C. MacKintosh, Physical
Review E 93, 012407 (2016).

[33] L. P. Kadanoff, Physics Physique Fizika 2, 263 (1966).
[34] See supplementary materials for details on Monte Carlo

simulations, shear stress behavior in diluted triangular
networks, and results for the regular honeycomb lattice.

[35] A. W. Lees and S. F. Edwards, Journal of Physics C:
Solid State Physics 5, 1921 (1972).

[36] M. Doi and S. Edwards, The Theory of Polymer Dy-
namics (International Series of Monographs on Physics,
1988).

[37] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and
P. Gumbsch, Physical Review Letters 97, 170201 (2006).

[38] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, The Journal of Chemical
Physics 21, 1087 (1953), publisher: American Institute
of Physics.

[39] D. Frenkel and B. Smit, Understanding molecular simula-
tion: from algorithms to applications, 2nd ed. (Academic
Press, San Diego, 2002).

[40] D. A. McQuarrie, Statistical mechanics, Harper’s chem-
istry series (Harper & Row, New York, 1975).

[41] J. Tauber, A. R. Kok, J. van der Gucht, and S. Dussi,
Soft Matter 16, 9975 (2020).

[42] C.-T. Lee and M. Merkel, “Generic elasticity of thermal,
under-constrained systems,” (2023), arXiv:2304.07266
[cond-mat, physics:physics].

[43] J.-M. Y. Carrillo, F. C. MacKintosh, and A. V.
Dobrynin, Macromolecules 46, 3679 (2013), publisher:
American Chemical Society.

[44] C. P. Broedersz and F. C. MacKintosh, Reviews of Mod-
ern Physics 86, 995 (2014).

[45] F. Meng and E. Terentjev, Polymers 9, 52 (2017).
[46] P. H. J. Kouwer, M. Koepf, V. A. A. Le Sage, M. Jaspers,

A. M. van Buul, Z. H. Eksteen-Akeroyd, T. Woltinge,
E. Schwartz, H. J. Kitto, R. Hoogenboom, S. J. Picken,
R. J. M. Nolte, E. Mendes, and A. E. Rowan, Nature
493, 651 (2013), number: 7434 Publisher: Nature Pub-

lishing Group.
[47] M. Jaspers, M. Dennison, M. F. J. Mabesoone, F. C.

MacKintosh, A. E. Rowan, and P. H. J. Kouwer, Nature
Communications 5, 5808 (2014), number: 1 Publisher:
Nature Publishing Group.

[48] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacK-
intosh, Science 315, 370 (2007).

[49] G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix,
F. C. MacKintosh, J. H. Hartwig, T. P. Stossel, and
D. A. Weitz, Proceedings of the National Academy of
Sciences 106, 15192 (2009).

[50] J. P. Winer, S. Oake, and P. A. Janmey, PLOS ONE 4,
e6382 (2009).

[51] K. A. Jansen, R. G. Bacabac, I. K. Piechocka, and G. H.
Koenderink, Biophysical Journal 105, 2240 (2013).

[52] M. Sheinman, C. P. Broedersz, and F. C. MacKintosh,
Physical Review Letters 109, 238101 (2012).


