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How do biological systems tune emergent properties at the scale of tissues? One class of such
emergent behaviors, important to biological functions such as body-axis elongation, involves rigidity
transitions, in which a tissue changes from a fluid-like state to a solid-like state or vice versa. Here,
we explore the idea that tissues might tune “learning degrees of freedom” to affect this emergent
behavior. We study tissue fluidity in the 2D vertex model, using the vertex model energy as
a learning cost function and the cell stiffnesses, target shapes, and target areas as sets of learning
degrees of freedom that can be varied to minimize the energy. We show that the rigidity transition is
unaffected when cell stiffnesses are treated as learning degrees of freedom. When preferred perimeters
or areas are treated as learning degrees of freedom, however, energy minimization introduces spatial
correlations in target cell shapes or areas that shift the rigidity transition. There is an optimal
heterogeneity of target cell shapes or areas to enable learning. These observations suggest that
biological tissues can learn tissue-scale behaviors by tuning their individual cell properties.

Instructions for constructing biological tissues are en-
coded at the scale of molecules but drive collective tissue
behavior at the multicellular scale. Similarly, in systems
such as mechanical, flow or electrical networks, instruc-
tions encoded in microscopic structure are responsible
for collective properties. An effective strategy for solving
the inverse problem of material design in these networks
is gradient descent on a learning cost function that em-
bodies the desired collective property by tuning micro-
scopic learning degrees of freedom, such as the presence
or absence of a bond, bond stiffnesses or rest lengths in
elastic networks, or conductances in flow or electrical net-
works [1]. Physics dictates that each system must also
satisfy physical constraints during learning, imposed by
minimizing the physical cost function (energy in elastic
networks or dissipated power in flow or electrical net-
works) with respect to physical degrees of freedom (node
positions in elastic networks, node pressures/voltages in
flow/electrical networks). Simultaneous minimization of
physical and learning cost functions with respect to phys-
ical and learning degrees of freedom can be used to gen-
erate an auxetic [2–4] or allosteric response [1, 5]. Al-
ternatively, minimization of physical cost functions while
varying learning degrees of freedom according to local
rules [6] can also be effective. Such local update rules
include those that naturally occur in real materials, like
directed aging [7–9], as well as rules that approximate
gradient descent, as in Equilibrium Propagation [10] or
Coupled Learning [11]. These ideas have led to successful
learning of desired properties in the lab [1, 7, 8, 12–14].

Here we explore the idea that biological epithelial tis-
sues might tune cell-scale properties, viewed as learn-
ing DOF, to drive robust macroscopic, collective behav-
iors necessary for development and evolution. A well-
vetted class of simple biophysical models (vertex [15–
18], Voronoi [19], and cellular Potts [20] models) success-
fully captures a fluid-to-solid transition controlled by cell

shape. Recent work demonstrates that tissues must shift
from a solid to a fluid [21, 22] or near-fluid [23] state as
a function of space [21] and time [22], to facilitate flows
necessary for body axis elongation [21–23] and organ for-
mation [24, 25]. Perhaps these developmental processes
can usefully be regarded as learning processes, in which
cell-scale learning DOF are adjusted to develop observed
tissue-scale behaviors.

This viewpoint is bolstered by the recent finding that
the Drosophila amnioserosa appears to shift its rigidity
transition to remain rigid throughout the developmental
process of dorsal closure by tuning preferred cell shapes
continuously throughout the process [26]. Here we in-
vestigate how learning DOF affect the fluid-solid transi-
tion in 2D vertex models more generally, to guide future
searches for active learning mechanisms in epithelial tis-
sues. We investigate how different sets of allowed learn-
ing DOF – specifically, cell stiffnesses, preferred areas, or
preferred perimeters – affect tissue rigidity. In contrast
to Ref. [26], where the rigidity transition trivially shifts
due to the changing average of the learning DOF distri-
bution, we fix the distribution or a set of its moments to
ask the more subtle question of whether spatial correla-
tions of learning DOF introduced by minimization of a
cost function are sufficient to shift the rigidity transition.

We study a 2D vertex model [16, 27], which describes
a tissue monolayer as a network of polygonal cells. The
physical DOF are the polygon vertices. Cellular proper-
ties and interactions are encoded in an energy function
E =

∑N
i

[
KA,i(Ai −A0,i)

2 +KP,i(Pi − P0,i)
2
]
, where

Ai and A0,i are the actual and preferred areas, Pi and
P0,i are the actual and preferred perimeters, KA,i and
KP,i are the area and perimeter moduli of cell i. It is
helpful to make the above equation dimensionless using
⟨KA,i⟩⟨A0,i⟩2 as the units of energy and

√
⟨A0,i⟩ as the
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FIG. 1. (a) Shear modulus G versus average target shape
⟨p0⟩ in vertex models with polydisperse p0i. Black curve (cir-
cles) shows minimization based solely on physical degrees of
freedom, while red curve (triangles) includes both physical
and {p0i} degrees of freedom. Inset illustrates shear modulus
scaling; dashed blue line indicates a slope of 1.0. (b) Rigid-
ity transition point p∗0 from edge tension percolation versus
shear modulus G with different σ values for {p0,i} as degrees
of freedom (DOF). Black dashed line represents y = x. (c,
d) Tissue structures for highlighted points in (a). Cells are
colored based on their p0,i values (higher p0,i is darker). Edge
tensions are shown in red, with thickness proportional to ten-
sion. Both snapshots have the same distribution of target
shape factors {p0,i}.

units of length. We then have

e =

N∑
i

[
ka,i(ai − a0,i)

2 + kp,i(pi − p0,i)
2
]
, (1)

where ⟨ka,i⟩ = 1, ⟨a0,i⟩ = 1, and pi, p0,i are the di-
mensionless actual and preferred shape indices. Eq. (1)
has been well studied for the case where ka,i, a0,i, kp,i
have delta-function distributions, and p0,i has a distri-
bution of zero [16, 18, 19] or nonzero width [28]. Here,
we study Eq. 1 using the open-source CellGPU code [29],
promoting ka,i, a0,i, kp,i and p0,i to learning DOF. Ini-
tially, N cell centers are chosen from a uniform random
distribution in a square box with length L =

√
N ; ver-

tices and edges are defined from a Voronoi tessellation of
these points. The energy in Eq. (1) is minimized using
the FIRE algorithm [30].

We investigate the impact of various sets of learning
DOF separately; e.g., when p0,i are learning DOF, we
initialize p0i values from a Gaussian distribution with
mean ⟨p0i⟩ and standard deviation σ, and set ka,i =
kp,i = a0,i = 1 for all cells. As in Hagh, et al. [31],
we focus on the case where the learning cost function is
simply the energy, or the physical cost function. Hagh

et al. have shown that in sphere packings, minimizing
the energy with respect to both physical DOF (particle
positions) and learning DOF (particle radii) allows the
system to find very rare low-energy states [31], shifting
the jamming transition. We minimize the energy (Eq.
(1)) with respect to both physical DOF (vertex posi-
tions) and learning DOF to study the influence of learn-
ing DOF on the rigidity transition. We keep the learn-
ing DOF distributions approximately fixed by imposing
constraints on sets of moments of the distribution, such
as the m = {−1,−2,−3, 1, 2, 3} moments (see the SI).
We also perform zero-temperature swap minimization to
fix the distribution exactly. In this method, each of the
N cells maintains its preferred property (introducing N
constraints), cells are swapped in a trial move, and moves
that lower the energy are accepted (see SI).
As the preferred shape index p0 increases, confluent

tissues with only physical degrees of freedom experience
a solid-fluid phase transition at a critical value p∗0 [18, 32].
For systems with polydisperse p0,i, the critical point p∗0
shifts towards larger average preferred shape factors with
increasing standard deviation σ of the p0 distribution [28]
(black data in Fig. 3a). For a system with p0,i drawn
from a Gaussian distribution with σ = 0.2 [22], we find
p∗0 = 4.05 ± 0.02 (curve with black circles in Fig. 1a).
We evaluate rigidity based on the shear modulus G [33]:
G > 0 in the rigid phase and G = 0 in the fluid phase. To
compute G we freeze all learning DOF (see SI). Unless
otherwise stated, error bars show the standard deviation
over 50 samples. As p0 → p∗−0 , approaching the transi-
tion from the rigid side, the shear modulus vanishes as a
power law: G ≈ a(p∗0−p0)b with b = 1.0 [18, 32]. We sub-
tract a finite-size-effect offset (see SI) and fit to this form
to see how the scaling exponent b and the position of the
rigidity transition, p∗0, change as we introduce different
sets of learning DOF.

Rigidity is associated with percolation of edges (cell-
cell junctions) with nonzero tensions [28]. The tension
of edge ij separating cells i and j is Tij = 2KP,i(Pi −
P0,i)+2KP,j(Pj −P0,j), which when nondimensionalized
becomes:

tij = 2kp,i
√
a0,iτ

p
i + 2kp,j

√
a0,jτ

p
j , (2)

where τpi = pi − p0,i is the tension of cell i in units of
⟨KA,i⟩⟨A0,i⟩3/2, i.e., energy/length. For p0 < p∗0, a perco-
lating cluster of nonzero edge tensions (Fig. 1) maintains
mechanical rigidity of tissue [28]. For p0 > p∗0, nonzero
edge tensions fail to percolate and the tissue is fluid – it
cannot resist shear deformation.
We first note that p∗0 is unaffected when the cell perime-

ter stiffnesses {kp,i} in Eq. 1 are allowed as learning DOF
(Fig. 2). Clearly, manipulating kpi

cannot affect perco-
lation of nonzero edge tensions if all the kp,i are positive.
Therefore, allowing kp,i as learning DOF does not affect
the rigidity transition. The scaling exponent b also re-
mains unchanged but the tissue softens (see SI).
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FIG. 2. Change in the rigidity transition point δp∗0 after
introducing different transient degrees of freedom (different
symbols), as a function of the number of constraints M on
the distribution. Inset shows how δp∗0 varies with N for M =
400. The zero-temperature swap system is indicated by 400
constraints, the number of cells in the tissue. These results
correspond to a standard deviation of σ = 0.2 of transient
DOF.

We next consider variations in cell area stiffnesses ka,i
as learning DOF with a0,i = 1, kp,i = 1 and p0,i = p0 for
every cell i. One might expect the system to distribute
its cell areas ai to be closer to a0,i = 1 for cells with
larger values of ka,i, leading to correlations that shift the
transition. However, vertex models are unstressed at the
rigidity transition [34], so their properties there cannot
depend on ka,i. As a result, the rigidity transition is
unaffected by introducing ka,i as learning DOF.

We now consider preferred shape indices {p0,i} as
learning DOF. Upon minimization, tissues adjust the
values of some individual preferred shape indices p0,i to
lower the energy by eliminating pi − p0,i. This leads to a
lower fraction of nonzero tension edges, shifting the rigid-
ity transition p∗0 to lower values (red triangles in Fig. 1a).
Thus, minimizing E with respect to p0,i as well as the ver-
tex positions introduces spatial correlations in p0,i that
fluidize a tissue that would otherwise be solid. This shift
persists whether we constrain certain moments of the p0-
distribution or preserve the distribution exactly (see Fig.
2). The scaling exponent b for the shear modulus remains
unaffected within our error bars (see SI). Moreover, the
amplitude a of the shear modulus decreases more than
when kp,i or ka,i are learning DOF (see SI).

Allowing p0,i as learning DOF not only shifts p∗0 but
also increases the amount of structural order in the tissue
(see SI). The hexatic order parameter [35] increases due
to patches of high hexatic ordering. Interestingly, the lo-
cal hexatic order of cell i shows a positive correlation with
pi−p0,i. Evidently such order discourages percolation of
tensional edges, shifting p∗0 downwards (see SI).

So far, we have used a fixed standard deviation (σ =
0.2) for the distribution of {p0,i}. However, σ signif-

(a)

(b)

σp0

σa0

FIG. 3. The effect of polydispersity of learning DOF
distributions on the rigidity transition point. (a) The
left axis shows the transition point p∗0 versus the standard
deviation σp0 of the {p0,i} distribution. When only vertex
positions can vary during energy minimization (black circles),
p∗0 increases with σp0 . However, when {p0,i} are also allowed
to vary (red triangles), the behavior of p∗0 versus σp0 becomes
non-monotonic. The right axis δp∗0 shows the reduction of p∗0
due to adding {p0,i} as degrees of freedom. (b) Same as (a),
but with {a0,i} allowed to vary instead of {p0,i}.

icantly influences tissue rigidity [28], shifting p∗0 up-
wards [28] (black circles in Fig. 3a). This raises the
question: how does the shift in the transition p∗0 due to
adding p0,i as learning DOF vary with σ? We observe
a reduction in p∗0 at all σ (compare the red triangles to
black circles in Fig. 3a). Interestingly, the magnitude
of this reduction is non-monotonic. The purple curve in
Fig. 3a, δp∗0, shows that the shift in the transition is
maximal at σ ≈ 0.15. This suggests there is an optimal
level of cell-to-cell fluctuations in biological tissues that
enables learning to modulate rigidity.

To understand this non-monotonicity, we first note
that as σ approaches zero, the {p0,i} distribution ap-
proaches a delta-function and no learning is possible.
Therefore, δp∗0 must increase away from that point. To
understand why δp∗0 decreases for σ ≳ 0.15, we analyzed
the correlations between p and p0 across all cells, both
with and without p0 as learning DOF. As expected, the
Pearson’s correlation coefficient ρ(p, p0) rises when we
incorporate cell p0 values as learning DOF across all σ
values (see SI); the energy is lowered by bringing pi closer
to p0,i. But for σ ≳ 0.15, p and p0 already exhibit strong
correlations even when p0,i are not learning DOF. Intro-
ducing p0,i as learning DOF only marginally enhances
this correlation, so δp∗0 decreases as shown in Fig. 3.
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Finally, we consider the preferred cell areas, A0,i. In
tissues where A0,i = A0 is the same for all cells, altering
A0 while keeping P0 fixed does not affect p∗0 due to the
confluency constraint (

∑
Ai = constant = L2) [36, 37].

Yang et al. [36] found that the difference between A0 and
the actual area ⟨A⟩ = N/L2 alters the overall pressure of
the system, but not the shear stresses. We find that even
in the presence of heterogeneous A0,i values, p

∗
0 is unaf-

fected by changes in the average target area ⟨A0⟩ (see SI),
so in what follows we hold ⟨A0⟩ = 1 fixed. The solid black
circles in Fig. 3b shows that varying the width of the
distribution of the dimensionless a0,i in Eq. 1 also does
not affect the transition point. Note that defining target
shape factors as P0,i/⟨Ai⟩ would introduce variability in
the transition point with σa0 (see SI). This suggests that
the enhanced rigidity discussed in Ref. [28] is caused by
heterogeneity in target shape indices (p0,i = P0,i/

√
A0,i)

and not by heterogeneity in P0,i.

Given these results, we promote {A0,i} to learning
DOF while keeping ⟨A0,i⟩ fixed. This introduces two
sets of learning DOF in the dimensionless energy in
Eq. 1, namely {a0,i} and {p0,i}. We have already shown
how introducing {p0,i} as learning DOF affects rigidity,
so now we consider the effects of a0,i in isolation. To
do so, we maintain a constant target shape factor for
cells, i.e., p0,i = p0, by coupling the target perimeters
{P0,i} with the target areas: {P0,i = p0

√
A0,i}. This

allows us to consider only {a0,i} while keeping the av-
erage ⟨A0,i⟩ = 1.0 at homogeneous p0,i = p0. We find
that introducing {a0,i} as learning DOF leaves the scal-
ing exponent for the shear modulus unchanged (see SI).
Similar to {p0,i}, the {a0,i} learning DOF shift the tran-
sition downwards. This occurs at all values of the width
of {a0,i} distribution, σa0

, with the maximum shift oc-
curring around σa0

≈ 0.3. Correlations in a0,i from cell to
cell causes τij in Eq. 2 to vanish for some edges, shifting
the percolation of nonzero tensions to lower p∗0.

We have explored the effects of adding learning degrees
of freedom in 2D vertex models on the rigidity transition,
p∗0. The transition is unaffected when cell stiffnesses KA

and KP are allowed to vary. In contrast, introducing
preferred cell areas or perimeters as learning degrees of
freedom significantly alters the tissue’s energy landscape,
shifting p∗0 downwards. Learned spatial correlations in p0
or a0 can fluidize a tissue, and there are optimal values for
the heterogeneity in p0 (σp0

≈ 0.15) and a0 (σa0
≈ 0.3)

that lead to the largest shift of the transition.

Learning DOF have previously been introduced into
networks that become rigid when the number of physical
degrees of freedom equals the number of physical con-
straints [2–4, 31]. In contrast, vertex models are highly
under-constrained and become rigid through geometric
incompatibility [34]. Our finding that rigidity in these
models is also strongly affected by learning DOF sug-
gests that vertex models can learn.

It is well-established that systems with fixed topology

can learn intricate tasks [6]. While Hagh et al. [31]
demonstrated that jammed particle packings subject to
frequent rearrangements can learn to identify ultra sta-
ble states, it is difficult to tune arbitrary mechanical
responses into typical jammed states because they are
marginally stable to rearrangements [38]. Confluent ep-
ithelial tissues lie in an intermediate state between these
two extremes – topological rearrangements, primarily in
the form of T1 transitions, can occur but are not nearly as
prevalent as in jammed packings. Our finding that pre-
ferred shape indices and cell areas effectively tune rigidity
in vertex models suggests that introducing them as learn-
ing DOF could be a fruitful way of obtaining complex
responses in systems that allow topological rearrange-
ments.

The framework of physical learning with {p0,i} or
{a0,i} as learning DOF could provide a new paradigm
for understanding biological tissue mechanics. Individ-
ual cells can control cell- and molecular-scale properties,
including the concentration of adhesion molecules and
myosin motors, which in turn govern the preferred shape
index locally [22, 39]. Our work indicates that tissues
should be able to learn if they follow a global gradient
closely enough. In other systems, it has been possible
to identify local learning rules that project sufficiently
onto the global gradient to allow learning [7–9, 11, 12].
It would be interesting to study whether local rules gov-
erning the dynamics of cell shapes and tensions that have
already been proposed [23, 40, 41] project onto gradients
of useful global learning cost functions, or conversely, to
hypothesize learning cost functions for tissues and search
for possible local learning rules that enable them to be
minimized. More broadly, this framework could be use-
ful for predicting how the dynamics of tissues arises from
variation of cellular properties across developmental or
evolutionary timescales.
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SUPPLEMENTAL INFORMATION

Details of the model

In these coarse-grained vertex models, tissue monolay-
ers are described as a network of polygonal cells and the
physical degrees of freedom (DOF) are the vertices of
these polygons. Cellular properties and interactions are
encoded in an energy function

E =

N∑
i

[
KA,i(Ai −A0,i)

2 +KP,iP
2
i + γiPi

]
, (S1)

where Ai and A0,i are the current and preferred cell areas,
Pi is the cell perimeter, γi is the interfacial tension, and
KA,i KP,i are the area and perimeter stiffnesses, respec-
tively. The first term in energy is due to monolayer’s re-
sistance to height fluctuations and cells incompressibility.
The active contractility of actomyosin cortex is captured
as a quadratic penalty in cell perimeters in the second
term of Eq. (S1). The competition between cortical ten-
sion and cell-cell adhesion of contacting cells results in
an interfacial tension γi that is included in the last term.

By adding a constant term P0,i = −γi/(2KP,i)—a pre-
ferred perimeter—to Eq. (S1), we obtain

E =

N∑
i

[
KAi

(Ai −Ai0)
2 +KPi

(Pi − Pi0)
2
]
. (S2)

Using the energy scale ⟨KA,i⟩⟨A0,i⟩2 and the length

scale
√

⟨A0,i⟩, we can non-dimensionalize this elastic en-
ergy as

e =

N∑
i

[
ka,i(ai − a0,i)

2 + kp,i(pi − p0,i)
2
]
. (S3)

Details of energy minimization

To simulate a 2D vertex model, we use the CellGPU
open-source code [29]. We randomly generate cell posi-
tions in a periodic square box of lateral length L =

√
N ,

where N is the number of cells. We create the initial
tissue by Voronoi tessellation of these points. In order
to analyze the mechanical behavior of biological tissues
at zero temperature, we minimize the elastic energy in
Eq. (S3) using FIRE [30]. Once we achieve the mini-
mum energy state, we calculate properties such as linear
shear modulus G to determine the mechanical stability
of our system. Below, we briefly explain how to compute
forces in a vertex model as well as how to perform energy
minimization with various degrees of freedom.

Minimizing e with respect to physical degrees of freedom

The individual cell areas and perimeters are calculated
from positions of vertices {r⃗m} associated with that cell.
For a cell i with n vertices (or number of neighbors), we
have

Pi =

n∑
m=1

||r⃗m+1 − r⃗m||

Ai =
1

2

n∑
m=1

(r⃗m+1,x + r⃗m,x)(r⃗m+1,y − r⃗m,y)

(S4)

where the summation goes counterclockwise around ver-
tices of the cell and we define r⃗n+1 = r⃗1. For finding the
area of a polygon, we use the trapezoid formula. How-
ever, other formulas like the shoelace or triangle formulas
can also be used. The total force on vertex m is com-
puted by adding the force contribution of its three adja-
cent cells. The α component of the force contribution of
cell i on vertex m is

f im,α = − ∂ei
∂rm,α

= −2ka,i(ai − a0,i)
∂ai
∂rm,α

− 2kp,i(pi − p0,i)
∂pi
∂rm,α

,

(S5)

where the derivatives of area and perimeter are com-
puted from calculating the derivatives of Eq. (S4). After
finding the α component of force contributions of three
cells that vertex m is part of, we obtain the total force
fm,α =

∑
i=1,2,3 f

i
m,α. In order to find the minimum

energy configuration, we use FIRE [30]. The minimiza-

tion algorithm is stopped when max(||f⃗m||)/Nv, where
Nv is the number of degrees of freedom (here the num-
ber of vertices), becomes less than 10−10. During energy
minimization, the network topology is updated using T1
transitions with an edge threshold of 10−5.

Minimizing e with respect to both physical and learning
degrees of freedom

The internal degrees of freedom like {kp,i} and {p0,i}
can be added in the minimization procedure to study
the effects of these additional DOF on the mechanics of
tissue. We study the effect of these different types of
learning DOF one at a time. For example, when adding
target shape factors {p0,i}, we set ka,i = a0,i = kp,i = 1
for all cells. We initialize p0,i values from a Gaussian dis-
tribution with a standard deviation of σ and mean ⟨p0,i⟩.
These {p0,i} are basically added in the minimization pro-
cedure similar to the physical DOF. The forces on these
new DOF are computed as

fp0,i
= − ∂ei

∂p0,i
= 2kp,i(pi − p0,i). (S6)
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The energy in Eq. (S3) is then minimized with respect
to both vertex positions (physical DOF) and these {p0,i}
(learning DOF). We note that the convergence of the
minimization algorithm is more robust if we first mini-
mize the physical DOF before including these additional
DOF. In the case of {p0,i} DOF, if there are no con-
straints on the distribution of {p0,i}, the system tunes
these new DOF until pi − p0,i = 0, which results in a
fluid state at the mean shape index of ⟨p0,i⟩ ≃ 4.1. In
the case of {kp,i} DOF, without any constraints on the
distribution of these new DOF, cells can arbitrary lower
their kp,i during energy minimization.
To avoid these pathological states, we fix the distribu-

tion of learning DOF by constraining a set of moments,
e.g., when adding {p0,i} as new DOF, we fix ϕk =

∑
i p

k
0,i

where k = {m1,m2, ..,mn}, mi is an integer value. With
a sufficient number of moments, we find that the {p0,i}
distribution is preserved during our energy minimization
within an error margin. In presence of these constraints,
the forces fp0,i are modified in the constrained space of
these moments. After finding the constraint Jacobian J
of these moments as

Jk,i =
∂ϕk
∂p0,i

= kpk−1
0,i . (S7)

The orthonormalized constraint basis Jo can be com-
puted using the Gram–Schmidt process. Therefore, the
forces on p0,i in Eq. (S6) are projected in this constrained
space [31]

f cp0,i
= fp0,i − JoJo

T fp0,i (S8)

By using these constrained forces f cp0,i
, we ensure that

the system does not alter the moments ϕk. Above, we
explained the simulation procedure for adding {p0,i} as
learning DOF. Adding other types of learning DOF like
{kp,i} is done in a similar way. We observe that when
constrained minimization is applied to learning degrees
of freedom, there is a possibility that the system may
not maintain the distribution within our desired error
margin, particularly near the transition point. This hap-
pens even though all specified moments are preserved.
To overcome this limitation, we have also employed a
zero-temperature swap minimization technique. This ap-
proach precisely maintains the distribution of the learn-
ing degrees of freedom. We describe this minimization
method in the subsequent section.

Zero-temperature swap minimization method

A useful limit of adding learning DOF is when the
distribution of the learning DOF is exactly fixed. For
instance, in the case of p0,i DOF, we start by drawing the
target shape factors of cells from a Gaussian distribution
with a standard deviation of σ and an average ⟨p0,i⟩. To

(a)

(b)

(c)

FIG. S1. Energy ratio versus zero-temperature swap moves
when the target shape factors of cells {p0,i} are drawn from
a normal distribution with a standard deviation σ = 0.2. (a)
For an average target shape factor of ⟨p0,i⟩ = 3.7 (b) For an
average target shape factor of ⟨p0,i⟩ = 3.75 (c) For an average
target shape factor of ⟨p0,i⟩ = 3.9. The dark markers show
the mean value and the thin lines show 50 different samples.
We used N = 300 cells in our simulations.

make sure that the distribution of p0,i is exactly fixed, we
randomly swap p0,i of two cells, minimize the energy with
respect to the vertex positions, and accept the swap move
only if the energy decreases, illustrated by the following
pseudocode:

e1 = Minimized energy wrt vertex positions
Swap cells i and j
e2 = Minimized energy wrt vertex positions
if e2 < e1 then

Accept this swap move
else

Reject this swap move
end if

Figure S1 shows the energy versus number of these
zero-temperature swap moves at different values of the
average target shape factor. The energy continuously
decreases as a function of swap moves until it reaches a
plateau. For system sizes studied, we find that typically
∼ 104 swap moves results in a plateau.
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Shear modulus calculation

As a measure for rigidity, we focus on the linear shear
modulus G of the vertex model. It is important to note
that while energy minimization might include learning
degrees of freedom (DOF), these additional DOF are
frozen during the calculation of G. Essentially, learning
DOF are utilized solely to attain new configurations of
the tissue. The solid-like state of the tissue is character-
ized by a finite value of G, whereas in a fluid-like state, G
is zero. The shear modulus is determined by computing
the second derivative of the system’s energy in relation
to an infinitesimally small applied simple shear strain γ

G =
1

L2

∂2E

∂γ2
, (S9)

where L =
√
Nc is the lateral dimension of the simulation

box. Rather than applying multiple strain deformations
and numerically calculating this second derivative, the
shear modulus can be efficiently determined from the
Hessian matrix corresponding to the energy-minimized
state [33]. The elements of the Hessian are constituted
by the second derivatives of the energy in relation to the
positions of the vertices

Diα,jβ =
∂2E

∂riα∂rjβ
, (S10)

where riα and rjβ are the α component of the coordinates
of vertex i and β component of the coordinates of vertex
j, respectively. It can be shown that [33]

G =
1

L2

∂2E

∂γ2
−
∑
m

1

ω2
m

∑
j,α

∂2E

∂γ∂rjα
umjα

2
 , (S11)

where ω2
m are the non-zero eigenvalues of the Hessian

matrix and umjα are the corresponding normalized eigen-
vectors.

To analyze the scaling behavior of G as it approaches
the critical point p∗0, we employ a bisection method to
differentiate between the rigid and floppy states of the
tissue. We start with an initial bracket [pS0 , p

F
0 ], where

pS0 = 3.65 represents the solid state and pF0 = 4.2 rep-
resents the fluid state. Subsequently, we iteratively nar-
row this bracket by conducting minimizations at its mid-

point p0 =
pS
0 +pF

0

2 . We note that we do not include the
box shear degrees of freedom in our minimization pro-
cedure. The criterion for adjusting the bracket is based
on the shear modulus. Specifically, if the system has a
shear modulus below a pre-defined threshold (in this case,
10−4), the fluid boundary pF0 is updated to the current
midpoint p0. Conversely, if the shear modulus exceeds
this threshold, the solid boundary pS0 is updated in a
similar manner. We perform at least 20 iterations of this

(b)

(a)

FIG. S2. The behavior of shear modulus G versus the dis-
tance to the critical point without shear-stabilization. (a) The
shear modulus G versus the distance to the rigidity transition
point that was obtained using bisections. (b) The onset of
shear modulus G0 at the critical point p∗0, i.e., the plateau in
(a), versus system size N . This plateau vanishes at large N
(the dashed line shows a slope of −1.3). These results are for
energy minimized-states with respect to only physical degrees
of freedom. All cells here have the same p0 values, i.e., there
is no polydispercity in p0 parameter.

bisection process to accurately locate the tissue’s rigidity
transition point.
Figure S2 illustrates the behavior of G versus its dis-

tance from the critical point for various system sizes. No-
tably, as we approach p∗0, G exhibits a plateau that dis-
appears in the thermodynamic limit. This observation
aligns with previous work, indicating that such a plateau
is absent in the shear-stabilized tissues [32].
Incorporating additional learning degrees of freedom

leads to a decrease in tissue rigidity. Notably, introducing
either p0,i or a0,i degrees of freedom leads to a more sig-
nificant decrease in the shear modulus G compared to the
effect of cell stiffness DOF. This is clearly shown in Fig-
ure S3. Interestingly, the scaling exponent of the shear
modulus near the critical point remains unaffected as var-
ious learning DOFs are introduced, as demonstrated in
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(b)

(d)

(c)

𝑘!

𝑘"

𝑎#

𝑝#

FIG. S3. The effect of adding various learning DOF in vertex
models on the shear modulus G. Each plot specifies the type
of newly added DOF. Dark markers indicate the behavior of
G in the absence of any learning DOF. For these simulations,
the standard deviation for the distributions of learning DOF
is fixed at σ = 0.2. On the right side of each plot, we display
the ratio of G values obtained with the inclusion of new DOF
compared to those without.

Figure S4.

The effect of target area A0

Yang et al.[36] have demonstrated that the manipu-
lation of A0 within a homogeneous system exhibits no
impact on the mechanics of vertex models such as shear
modulus and rigidity transition point. Here, we show
that even in a heterogeneous system with polydispersity
in A0, changing the average of A0 distribution does not
change the shear modulus behavior. Here, we assume
that KA, KP , and P0 are fixed and uniform for every
cell.

E =
∑
i

KA(Ai −A0i)
2 +KP (Pi − P0)

2 (S12)

=
∑
i

KAA
2
i − 2KA

∑
i

AiA0i +
∑
i

KAA
2
0i

+
∑
i

KP (Pi − P0)
2

We can find the following by adding and subtracting the
term KA

N A2
t to the equation above, where At =

∑
iAi =

FIG. S4. The effect of transient degrees of freedom on the
scaling exponent b of the shear modulus as a function of con-
straints on the distribution. The zero-temperature swap sys-
tem is indicated by 400 constraints, the number of cells in the
tissue. The results are for a standard deviation of σ = 0.2 of
transient degrees of freedom.

L2 represents the total tissue area

E =
∑
i

(Ai − ⟨A⟩)2 + KA

N
A2

t − 2KA

∑
i

AiA0i (S13)

+
∑
i

KAA
2
0i +

∑
i

KP (Pi − P0)
2

where ⟨A⟩ is the average area per cell, ⟨A⟩ = L2/N . Note
that the terms KA

N A2
t and

∑
iKAA

2
0i are constant offsets

in the energy function. However, the term 2KA

∑
iAiA0i

can affect the forces on vertices. This term can be simpli-
fied by substituting Ai = ⟨A⟩+δAi and A0i = ⟨A0⟩+δA0i∑

i

AiA0i = At⟨A0⟩+
∑
i

δAiδA0i (S14)

The first term in the equation above indicates that the
average value of the A0i distribution affects the overall
pressure of the system by a factor of 2KA⟨A0⟩. This ef-
fect is similar to that of a system where all cells have
homogeneous A0i values. The second term in the equa-
tion can cause the forces on vertices to change. This
happens because there may be fluctuations in both the
target area and the current area of the cell. We note
that

∑
i δAiδA0i = (N − 1) Cov(A,A0). By analyzing

our simulation data, we find that this term is negligi-
ble compared to other terms in the elastic energy. As
a result, even in the context of a heterogeneous tissue
with a polydisperse distribution in A0i, variations in the
target area A0 exert no significant impact on the shear
modulus. Consequently, when A0i values are introduced
as learning degrees of freedom in tissues, changing their
average ⟨A0i⟩, while maintaining constant and uniform
target perimeters P0,i, does not result in any alteration
of the shear modulus behavior.
Importantly, changing the width σa0

of the A0,i dis-
tribution in systems without learning DOF also does not
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FIG. S5. Comparison of rigidity transition points using two
definitions of the target shape factor. The energy minimiza-
tion is performed solely with respect to physical degrees of
freedom with a distribution of a0i values at different stan-
dard deviations σa0 . Here, we define a0,i as A0,i/⟨A0,i⟩, with
⟨A0,i⟩ = 1. In the simulations, we maintain a fixed target
shape factor defined as p0,i = p0 = P0,i/

√
A0,i. But we com-

pute the target shape index in two different ways; in one case
the shape index definition is based on the average cell area,
denoted as p̃0,i = P0,i/

√
⟨Ai⟩. In this case, ⟨Ai⟩ is set to

1, simplifying p̃0,i to P0,i (green data). In the other case we
compute it based on the target areas of cells as in the main
text, p0,i = P0,i/

√
A0,i (black data).

have an impact on the transition point, in contrast to
the behavior observed when changing the width of the
p0 distribution. The transition point is illustrated by
the black data in Fig. S5 and main text Fig. 3(b). In
other words, due to the arguments above, both non-
dimensionalizations give the same results up to an ar-
bitrary energy constant. However, because in hetero-
geneous systems the individual

√
A0i values can affect

tensions, there is the possibility that changing the width
of the area distribution could affect the rigidity transi-
tion point. As shown in Fig. S5, if one defines a di-
mensionless target shape index p̃0,i = P0,i/

√
⟨Ai⟩, the

rigidity transition shifts to lower values as a function of
the width σa0 (green data). But, if one uses the dimen-
sionless target shape index p0,i = P0,i/

√
A0,i, as we have

done throughout the manuscript, then the rigidity tran-
sition point is constant in those units (black data). This
implies that the enhanced rigidity, as elucidated in Ref.
[28], results from the heterogeneity in target shape in-
dices (p0,i = P0,i/

√
A0,i), rather than stemming from

variations in P0,i.

Details of tension percolation analysis

The rigidity transition in vertex models is governed by
edge tensions. When the system is in the solid regime, the
geometric incompatibility between the current and tar-
get cell perimeters leads to the formation of a tensional
cluster that spans the entire tissue. The mechanical sta-
bility of tissue is due to the presence of this percolated

cluster. However, in the regime characterized by a large
target shape factor, the tensional cluster fails to perco-
late, resulting in a fluid-like behavior of the tissue with
a zero shear modulus. The transition point at which the
tissue undergoes this rigidity change can be estimated
using either tension percolation analysis or by examining
the shear modulus.

To investigate tension percolation in our models, we
begin by calculating the tensions, Tij , on all edges ij
between cells i and j

Tij = 2KP,i(Pi − P0,i) + 2KP,j(Pj − P0,j). (S15)

Edges with tensions below a certain threshold, set here
at 10−6, are considered to have zero tension (varying
this small threshold has no significant effect on our re-
sults). We then identify the largest connected cluster
of edges that have non-zero tensions. The system is
classified as rigid if the linear size of this rigid ten-
sion cluster surpasses the dimensions of our simulation
box. The linear size of this cluster is determined by
max(max(xv) − min(xv),max(yv) − min(yv)), where
v denotes a vertex within this largest rigid cluster. By
adjusting the average ⟨p0⟩ and examining the percola-
tion of edge tensions, we are able to estimate the critical
point of rigidity transition, denoted as p∗0. To validate
the tension-driven rigidity mechanism in our model, we
compare the critical point derived from our percolation
analysis with the results from shear modulus calculations,
as shown in Fig. 1b. This agreement reinforces the idea
that edge tensions are pivotal in governing the rigidity
transition in the model, both when learning degrees of
freedom are absent and present.

The effect of the width of p0 distribution on shear
modulus G

The shear modulus G in vertex models depends not
only on the average target shape factor ⟨p0,i⟩ but also on
its polydispersity. Li et al., 2019 [28], demonstrated that
when tissues are minimized with respect to only physical
degrees of freedom (i.e., vertex positions), the rigidity
transition point increases with the standard deviation of
the {p0,i} distribution. As we explore in the main text,
incorporating {p0,i} as additional degrees of freedom in
our energy minimization shifts the rigidity transition to
lower values, regardless of the standard deviation of these
degrees of freedom. Figure S6 shows how G varies with
the average target shape factors, which are sampled from
a normal distribution with different standard deviations
σ (as specified in the legend).
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(a)

(b)

⟨p0⟩

FIG. S6. The effect of standard deviation of p0,i distribu-
tion σ on shear modulus G. (a) Shear modulus versus the
average target shape factor for various values of the standard
deviation as shown in the legend. These results are for tis-
sues that are energy-minimized with respect to only physical
degrees of freedom, i.e., vertex positions. (b) Same as (a) but
in presence of learning degrees of freedom {p0,i} using zero
temperature swap method.

Comparing the initial and final distributions

Incorporating new degrees of freedom into our tissue
models necessitates careful management of their distribu-
tions to avoid trivial or unphysical outcomes post energy
minimization. For example, adding cell stiffness parame-
ters {kp,i} as degrees of freedom without any constraints
on their distribution can result in tissues unrealistically
driving these parameters to negative values. To miti-
gate this, our minimization process includes constraints
on the distribution of these new degrees of freedom. This
is achieved by fixing a certain number of distribution
moments, as explained the sections above. It is impor-
tant to note, though, that deviations between the initial
and final distributions are inevitable following our con-
strained minimization approach. These deviations tend
to increase with fewer constrained moments. Figure S7
compares the initially set and the resultant distributions
after applying constraints on six moments, specifically
{−3,−2,−1, 1, 2, 3}. To ensure that possible variations
in distributions do not impact our findings, we employed
a zero-temperature swap minimization method (as ex-

FIG. S7. Distributions of target shape factors {p0,i} be-
fore (black) and after (orange) constrained minimization with
⟨p0⟩ = 3.8 and σ = 0.2. Here, we fixed 6 different moments
of the distribution during our minimization.

plained in the above sections, as well). This technique
precisely maintains the distribution fixed during energy
minimization, relying solely on cell shuffling to achieve
the lowest energy configuration.

Correlations

To decipher the observed nonmonotonic variation in
the rigidity transition point relative to the standard de-
viation σ of the p0 or a0 distributions, we investigated
the correlations between pi and p0,i, as well as between ai
and a0,i. These correlations were analyzed both when p0
or a0 were and were not included as new degrees of free-
dom. To measure these correlations, we employed Pear-
son’s correlation coefficient, symbolized as ρ. Pearson’s
correlation coefficient quantifies the relationship between
two data sets and is calculated by

ρ(x, y) =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
, (S16)

where xi and yi represent individual data points, while x̄
and ȳ denote their respective average values. Figure S8
exhibits the correlation patterns for different σ values.
Notably, for higher σ ≳ 0.15, a strong correlation exists
between pi and p0,i, even without considering p0,i as new
degrees of freedom. Consequently, introducing these new
DOF has minimal impact on exploring the tissue’s energy
landscape. This leads to a less pronounced shift in the
rigidity transition point as the permitted fluctuations in
p0,i increase a threshold σ ≈ 0.15. A similar trend is
observed when target areas a0,i are introduced as new
DOFs, while maintaining a uniform target shape factor
p0,i = p0 (refer to Fig. S8c and d).
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(a)

(b)

(c)

(d)

FIG. S8. The Pearson’s correlation coefficient behavior. (a)
ρ(pi, p0,i) versus the average target shape factor for differ-
ent values of the standard deviation of the p0 distribution as
shown in the legend. Here, the system’s energy is minimized
only with respect to the physical degrees of freedoms, i.e.,
vertex positions. (b) Same as (a) but the target shape factors
p0,i are added as new DOF in the energy minimization. (c)
Showing the correlations of target areas a0,i and current cell
areas ai in tissues without adding target areas as DOF and at
uniform target shape factors p0,i = p0. (d) Same as (c) but
a0,i are added as new DOF in the minimization process.

Structural features of tissues

To decipher the difference between microstructure of
tissues with and without learning degrees of freedom, we
study the structural features such as the pair correlation
function g(r) and the hexatic order parameter. We com-
pute g(r) based on the cell centers that are calculated
as center of masses of cell vertices in our vertex model.
Figure S9 shows the behavior of g(r) for systems with
and without adding learning degrees of freedom {p0,i}.
In presence of {p0,i} DOF, tissues show sharper peaks in
their pair correlation function depicting a more ordered
structure. This effect becomes more pronounced near the
transition point (Fig. S9).

To further quantify the structural differences, we study
the hexatic order parameter for tissues with and without
{p0,i} DOF. The local hexatic order parameter of cell k

is computed as following

ψk =
1

nl

∑
⟨kl⟩

e6iθkl , (S17)

where nl is the number of neighbors for cell k, θkl is the
angle of the vector between cells k and l with respect to
the positive x-axis, and i is the imaginary number. The
tissue-scale hexatic order parameter is calculated by av-
eraging these ψk over all cells Ψ = 1

N

∑
k ψk. Consistent

with our g(r) results, we find larger values of this hexatic
order parameter when {p0,i} DOF are present in tissues,
attributed to the localized regions with strong hexatic
ordering. Notably, there exists a positive correlation be-
tween the local hexatic order of cell i and the quantity

(b) (c)(a)

(b) (c)

FIG. S9. Comparison of pair correlation function g(r) for
tissues with and without learning degrees of freedom. (a) The
linear shear modulus versus the average target shape factor
with a standard deviation of σ = 0.15 of {p0,i} distribution.
The black (red) data points correspond to minimized-states
without (with) including {p0,i} DOF. (b) g(r) for the same
average target shape factor ⟨p0⟩ (highlighted in the top plot of
shear modulus). The dark circles (red triangles) correspond
to tissues without (with) adding {p0,i} degrees of freedom.
The x-axis is re-scaled with the typical half distance between
cells. (c) Similar as (b) but for a higher value of ⟨p0⟩, as shown
in the top plot. We used a system size of N = 300 cells.

pi − p0,i. Consequently, this large hexatic ordering ac-
tively inhibits the percolation of tensional edges, causing
a downward shift in the critical threshold p∗0 (Fig. S10).
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(a)

(b)

(c)

(d)

(d)

(c)

(c)

(d)

FIG. S10. Comparison of structural order with and with-
out preferred perimeters as learning degrees of freedom. (a)
Hexatic order parameter |Ψ6|2 vs. the average target shape
index < p0 >. Red triangles are tissues with learning degrees
of freedom and black circles are tissues with only physical
degrees of freedom. (b) Pearson correlation coefficient be-
tween the local hexatic order of cells and the absolute value
of the cell-scale tension (τP = p − p0). The vertical dashed
lines indicate the rigidity transition point for each system. (c)
and (d): Snapshots of tissues at average target shape indices
highlighted in green in (a) and (b). Snapshot (c) showcases
the structure of a tissue without learning degrees of freedom,
while (d) is after learning in (p0). Cells are color-coded based
on their local hexatic order, and edge tensions are shown in
red, with thickness proportional to the tension.
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