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Rigidity of epithelial tissues as a double optimization problem
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How do cells tune emergent properties at the scale of tissues? One class of such emergent behaviors are
rigidity transitions, in which a tissue changes from a solidlike to a fluidlike state or vice versa. Here we introduce
a way for a tissue described by a vertex model to tune its rigidity by using “tunable degrees of freedom.” We
use the vertex model elastic energy as a cost function and the cell stiffnesses, target shapes, and target areas
as different sets of degrees of freedom describing cell-cell interactions that can be tuned to minimize the cost
function. We show that the rigidity transition is unaffected when cell stiffnesses are treated as tunable degrees
of freedom. When preferred shapes or areas are treated as tunable degrees of freedom, however, induced spatial
correlations in target cell shapes or areas shift the rigidity transition. These observations suggest that tissues
can coordinate changes in cell-scale properties, treated here as tunable degrees of freedom, to achieve desired
tissue-scale behaviors.
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I. INTRODUCTION

The molecular processes that govern the formation of bi-
ological tissues operate at the cellular level but give rise
to collective behavior at the multicellular scale. Similarly,
in systems such as mechanical, flow, or electrical networks
instructions encoded in the microscopic structure control
collective properties. In materials design, the process of
achieving a specific functionality typically involves a series
of iterative steps in which the system is continually tested for
desired functionality, adjusted based on feedback, and tested
again to refine its performance. An effective strategy for solv-
ing this inverse problem of material design in these systems is
gradient descent on a cost function that embodies the desired
collective property by tuning microscopic tunable degrees
of freedom (DOFs) characterizing interactions, such as the
presence or absence of a bond [1–4], bond stiffnesses [5,6],
or rest lengths in elastic networks, or conductances [5] in
flow or electrical networks. Physics dictates that each system
must also satisfy physical constraints during this process,
imposed by minimizing the energy in elastic networks or
dissipated power in flow or electrical networks, with respect
to physical DOFs (node positions in elastic networks or node
pressures/voltages in flow/electrical networks).

Simultaneous minimization of the cost function and
energy/power with respect to tunable and physical
DOFs (double optimization) can be used to generate an
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auxetic [1,3,4] or allosteric response [2,5]. Alternatively,
minimization of the energy/power while varying tunable
DOFs according to local rules [7] can also be effective.
Such local update rules include those that naturally occur
in real materials, like directed aging [6,8,9], as well as
rules that approximate gradient descent, as in Equilibrium
Propagation [10] or Coupled Learning [11]. These ideas
have led to successful learning of desired properties in the
laboratory [2,6,8,12–14].

Here we show that biological tissues can potentially tune
cell-scale properties, viewed as tunable DOFs, to drive robust
macroscopic, collective behaviors necessary for development
and evolution. Our work focuses on rigidity transitions, which
are a specific example of macroscopic collective behav-
ior. Rigidity transitions occur when the tissue collectively
switches back and forth from fluidlike behavior, where cells
are able to rearrange neighbors and the tissue can accom-
modate significant strain, to a solidlike behavior, where
cells do not change neighbors and straining the tissue costs
energy. Recent experiments demonstrate that tissues shift
from a solid to a fluid [15,16] or near-fluid state [17] as
a function of space [15] and time [16], to facilitate flows
necessary for body axis elongation [15–17] and organ forma-
tion [18,19]. A well-vetted class of simple biophysical models
(vertex [20–23], Voronoi [24], and cellular Potts [25] mod-
els) have successfully made quantitative predictions—with no
fit parameters—for rigidity transitions in confluent epithelial
tissues [16,22,26]. A key feature of vertex models, validated
in experiments, is that the rigidity transition is controlled
by a geometric cell shape factor. This shape factor serves
as a coarse-grained parameter that encapsulates the effects
of molecular-scale processes, such as contractility driven by
myosin and adhesion regulated by E-cadherin [27,28].
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In this paper we explore the idea that developmental
processes can usefully be regarded as double optimization
processes, in which cell-scale tunable DOFs, such as cell
shape, are adjusted to optimize a tissue-scale cost function that
is minimized when the tissue achieves a desired macroscopic
final state, while simultaneously staying in mechanical equi-
librium. This viewpoint is bolstered by the recent finding that
the Drosophila amnioserosa appears to shift its rigidity tran-
sition to remain rigid throughout the developmental process
of dorsal closure by tuning preferred cell shapes continuously
throughout the process [29]. By framing a developmental pro-
cess as a double optimization problem, we can unambiguously
identify which cell-scale parameters within a vertex model are
important for controlling a given macroscopic property. We
argue that double optimization represents a theoretical frame-
work for identifying cell-scale and molecular mechanisms that
control larger-scale behavior, which is a major open problem
in cell and developmental biology. This framework allows
us to study an ensemble of tissue states that all minimize
the same cost function. If we can identify common features
in this ensemble that emerge from the double optimization
process, we can then search for such features in biological
experiments.

This problem is also interesting from a physics perspective.
Previous work has focused on over-constrained networks or
jammed packings, in which the parameter that controls rigid-
ity is the coordination number that describes the number of
constraints per particle or node. This is because such systems
become rigid when the number of DOFs equals the number
of constraints. Work by Hagh et al. [30] introduced tunable
DOFs in the form of particle radii and showed that these
can be used to control rigidity over a wide range by tuning
the coordination number, enabling the design of highly stable
jammed states [30].

In contrast, vertex models are highly under-constrained,
i.e., the number of physical DOFs (vertex positions) is much
larger than the number of constraints. Vertex models become
rigid through geometric incompatibility, where cells are un-
able to achieve their target perimeters and areas. The system
is stabilized due to energetic costs that occur only at second
order in perturbations to the constraints [31], the same mech-
anism that drives strain-induced rigidity in subisostatic fiber
networks [32–35]. This raises the question of whether rigidity
can be controlled in vertex models using tunable DOFs.

As a first step towards addressing these open physics
and biology questions, we investigate tunable DOFs in 2D
vertex models. We study how different sets of allowed tun-
able DOFs—specifically, cell stiffnesses, preferred areas, or
preferred perimeters—affect our ability to minimize a cost
function. Here, as proof of principle, we make the simplest
possible choice, analogous to Ref. [30] for the cost function
jammed packings: the total mechanical energy of the sys-
tem. In other words, we explore the ability of different sets
of tunable DOFs to drive the system towards zero-energy
floppy/fluidized states.

To characterize the sensitivity of vertex models to tunable
DOFs, we must also account for an important considera-
tion. Such models can be driven towards a fluidlike state
by simply altering the mean [23] or the width [36] of the
distribution of cell shapes. A similar result was discovered in

over-constrained jammed packings, where rigidity was found
to be trivially dependent on the first and second moments of
the radii distribution [30]. As in that previous work [30], we
avoid these trivial dependencies by fixing the distribution (or
a set of its moments) and asking whether double optimization
is able to introduce spatial correlations in the tunable DOFs
that are sufficient to shift the rigidity transition. If the system
is able to learn, our next goal is to identify which tunable
DOFs are able to control the rigidity transition, and identify
observable features that distinguish states that have learned
from those that have not.

II. MODEL

We study a 2D vertex model [21,37], which describes a tis-
sue monolayer as a network of polygonal cells. The physical
DOFs are the polygon vertices. Cellular properties and inter-
actions are encoded in an energy function E = ∑N

i [KA,i(Ai −
A0,i )2 + KP,i(Pi − P0,i )2], where Ai and A0,i are the actual and
preferred areas, Pi and P0,i are the actual and preferred perime-
ters, and KA,i and KP,i are the area and perimeter moduli of cell
i. It is helpful to make the above equation dimensionless using
〈KA,i〉〈A0,i〉2 as the units of energy and

√〈A0,i〉 as the units of
length. We then have

e =
N∑

i

[ka,i(ai − a0,i )
2 + kp,i(pi − p0,i )

2], (1)

where 〈ka,i〉 = 1, 〈a0,i〉 = 1, and pi, p0,i are the dimensionless
actual and preferred shape indices. Equation (1) has been well
studied for the case where ka,i, a0,i, kp,i have delta-function
distributions, and p0,i has a distribution of zero [21,23,24] or
nonzero width [36]. Here we study Eq. (1) using the open-
source CellGPU code [38], promoting ka,i, a0,i, kp,i, and p0,i

to tunable DOFs. Initially, N cell centers are set by random
sequential addition in a square box with length L = √

N ;
vertices and edges are defined from a Voronoi tessellation of
these points. The energy in Eq. (1) is minimized using the
FIRE algorithm [39].

We investigate the impact of various sets of tunable DOFs
separately; e.g., when p0,i are tunable DOFs, we initialize
p0i values from a Gaussian distribution with mean 〈p0i〉 and
standard deviation σ , and set ka,i = kp,i = a0,i = 1 for all
cells. As in Hagh et al. [30], we focus on the case where
the cost function is simply the energy, or the physical cost
function. Hagh et al. have shown that in sphere packings,
minimizing the energy with respect to both physical DOFs
(particle positions) and tunable DOFs (particle radii) allows
the system to find very rare low-energy states [30], shifting
the jamming transition. We minimize the energy (Eq. (1))
with respect to both physical DOFs (vertex positions) and
tunable DOFs to study the influence of tunable DOFs on the
rigidity transition. We keep the tunable DOF distributions ap-
proximately fixed by imposing constraints on sets of moments
of the distribution, such as the m = {−1,−2,−3, 1, 2, 3}
moments [see the Supplemental Material (SM) [40]]. This
constrained minimization method ensures the distribution of
tunable DOFs stays fixed during our minimization dynamics.
We also perform zero-temperature swap minimization to fix
the distribution exactly. In this method, each of the N cells
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maintains its preferred property (introducing N constraints),
cells are swapped in a trial move, and moves that lower the
energy are accepted (see SM [40]).

We evaluate rigidity based on the shear modulus G [41]:
G > 0 in the rigid phase, and G = 0 in the fluid phase. To
compute G, we freeze all tunable DOFs (see SM [40]). Unless
otherwise stated, error bars show the standard deviation over
50 samples.

III. RESULTS

A. Introducing target shapes and areas as tunable
DOFs can fluidize tissues

As the preferred shape index p0 increases, confluent tis-
sues with only physical DOFs experience a solid-fluid phase
transition at a critical value p∗

0 [23,34]. For systems with
polydisperse p0,i, the critical point p∗

0 shifts towards larger
average preferred shape factors with increasing standard de-
viation σ of the p0 distribution [36] [black data in Fig. 3(a)].
For a system with p0,i drawn from a Gaussian distribution
with σ = 0.2 [16], we find p∗

0 = 4.05 ± 0.02 [the curve with
black circles in Fig. 1(a)]. As p0 → p∗−

0 , approaching the
transition from the rigid side, the shear modulus vanishes
as a power law: G ≈ a(p∗

0 − p0)b with b = 1.0 [23,34]. We
subtract a finite-size-effect offset (see SM [40]) and fit to this
form to see how the scaling exponent b and the position of the
rigidity transition, p∗

0, change as we introduce different sets of
tunable DOFs.

FIG. 1. (a) Shear modulus G versus average target shape 〈p0〉 in
vertex models with polydisperse p0i. The black curve (circles) shows
minimization based solely on physical DOFs, while the red curve
(triangles) includes both physical and {p0i} DOFs. Inset illustrates
shear modulus scaling; the dashed blue line indicates a slope of
1.0. (b) Rigidity transition point p∗

0 from edge tension percolation
versus shear modulus G with different σ values for {p0,i} as DOFs.
The black dashed line represents y = x. (c), (d) Tissue structures for
highlighted points in (a). Cells are colored based on their p0,i values
(higher p0,i is darker). Edge tensions are shown in red, with thickness
proportional to tension. Both snapshots have the same distribution of
target shape factors {p0,i}.

FIG. 2. Change in the rigidity transition point δp∗
0 after introduc-

ing different transient DOFs (different symbols), as a function of the
number of moment constraints M on the distribution. Specifically, the
exact moments for M constraints are {−M/2, . . . , M/2}, excluding
zero. Inset shows how δp∗

0 varies with N for M = 400. The zero-
temperature swap system is indicated by 400 constraints, the number
of cells in the tissue. These results correspond to a standard deviation
of σ = 0.2 of transient DOFs.

Rigidity is associated with percolation of edges (cell-cell
junctions) with nonzero tensions [36]. The tension of edge i j
separating cells i and j is Ti j = 2KP,i(Pi − P0,i ) + 2KP, j (Pj −
P0, j ), which when nondimensionalized becomes

ti j = 2kp,i
√

a0,iτ
p
i + 2kp, j

√
a0, jτ

p
j , (2)

where τ
p
i = pi − p0,i is the tension of cell i in units of

〈KA,i〉〈A0,i〉3/2, i.e., energy/length. For p0 < p∗
0, a percolating

cluster of nonzero edge tensions (Fig. 1) maintains mechanical
rigidity of tissue [36]. For p0 > p∗

0, nonzero edge tensions
fail to percolate and the tissue is fluid—it cannot resist shear
deformation.

We first note that p∗
0 is unaffected when the cell perime-

ter stiffnesses {kp,i} in Eq. (1) are allowed as tunable DOFs
(Fig. 2). This observation is consistent with the fact that, in
the case of uniform {p0,i}, the deviations in perimeter τ

p
i =

pi − p0,i are geometrically constrained to be non-negative
in the solid phase, which prevents the stiffness DOFs {kp,i}
from altering the percolation of edge tensions. This result
aligns with prior studies of jamming in sphere packings [30],
where stiffness DOFs are similarly irrelevant in shifting the
transition point. While this observation is supported by our
numerical results, a rigorous mathematical proof of this effect
is nontrivial and is reserved for future investigation. The scal-
ing exponent b also remains unchanged but the tissue softens
(see SM [40]).

We next consider variations in cell area stiffnesses ka,i as
tunable DOFs with a0,i = 1, kp,i = 1 and p0,i = p0 for every
cell i. One might expect the system to distribute its cell areas
ai to be closer to a0,i = 1 for cells with larger values of
ka,i, leading to correlations that shift the transition. However,
vertex models are unstressed at the rigidity transition [31],
so their properties there cannot depend on ka,i. As a result,
the rigidity transition is unaffected by introducing ka,i as
tunable DOFs.

We now consider preferred shape indices {p0,i} as tunable
DOFs. Upon minimization, tissues adjust the values of some
individual preferred shape indices p0,i to lower the energy by
eliminating pi − p0,i. This leads to a lower fraction of nonzero
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tension edges, shifting the rigidity transition p∗
0 to lower val-

ues [red triangles in Fig. 1(a)]. Since typical shape indices
observed in experiments range from about 3.8 to 4.3 [16,22],
the shift in the transition point from about 3.85 to about 4
is quite significant. Thus, minimizing E with respect to p0,i

as well as the vertex positions introduces spatial correlations
in p0,i that fluidize a tissue that would otherwise be solid.
This shift persists whether we constrain certain moments of
the p0 distribution or preserve the distribution exactly (see
Fig. 2). The scaling exponent b for the shear modulus remains
unaffected within our error bars (see SM [40]). Moreover, the
amplitude a of the shear modulus decreases more than when
kp,i or ka,i are tunable DOFs (see SM [40]).

Since allowing shape indices as DOFs shifts p∗
0, we expect

that it also alters the vibrational density of states that describes
the curvatures of the potential energy landscape in the rigid
phase near p∗

0. As shown in the SM [40], double optimiza-
tion on the {p0,i} DOFs reduces the curvatures and shifts the
normal modes to lower frequencies. While previous work has
suggested that additional signatures of double optimization,
such as high-curvature directions in the cost function [42,43],
can be found in eigenmodes of the cost Hessian, which in
this case are identical to the vibrational normal modes since
the cost function is simply the energy, we do not find any
such signatures here. We conjecture that this is because the
cost landscape and physical landscapes are already identical
from the beginning of the double optimization process. As
a result, there is no way in which double optimization can
leave imprints on the energy landscape through coupling of
two distinct landscapes.

Allowing p0,i as tunable DOFs not only shifts p∗
0 but also

increases the amount of structural order in the tissue (see
SM [40]). This ordering feature can be seen by sharper peaks
in the pair correlation function. Consistent with this obser-
vation, we find a higher fraction of hexagonal cells f6 when
{p0,i} are added as new DOFs (see SM [40]). Importantly, the
range of f6, from 0.3 to 0.65, is tunable through adjustments
in the mean and standard deviation of the {p0,i} distribution.
This property can be used to mimic the level of hexagonal
cells in epithelial tissues, which has been shown to change
substantially between different stages of development [44].

B. Nonmonotonic relationship between rigidity shift
and distribution width

So far we have used a fixed standard deviation (σ = 0.2)
for the distribution of {p0,i}. However, σ significantly influ-
ences tissue rigidity [36], shifting p∗

0 upwards [36] [black
circles in Fig. 3(a)]. This raises the question: how does the
shift in the transition p∗

0 due to adding p0,i as tunable DOFs
vary with σ? We observe a reduction in p∗

0 at all σ [compare
the red triangles to black circles in Fig. 3(a)]. Interestingly,
the magnitude of this reduction is nonmonotonic. The purple
curve in Fig. 3(a), δp∗

0, shows that the shift in the transition is
maximal at σ ≈ 0.15. This suggests there is an optimal level
of cell-to-cell fluctuations in biological tissues that enables
double optimization to modulate rigidity.

To understand this nonmonotonicity, we first note that as
σ approaches zero, the {p0,i} distribution approaches a delta
function and there are no tunable DOFs. Therefore, δp∗

0 must

FIG. 3. The effect of polydispersity of tunable DOF distributions
on the rigidity transition point. (a) The left axis shows the transition
point p∗

0 versus the standard deviation σp0 of the {p0,i} distribution.
When only vertex positions can vary during energy minimization
(black circles), p∗

0 increases with σp0 . However, when {p0,i} are also
allowed to vary (red triangles), the behavior of p∗

0 versus σp0 becomes
nonmonotonic. The right axis δp∗

0 shows the reduction of p∗
0 due to

adding {p0,i} as DOFs. (b) Same as (a), but with {a0,i} allowed to vary
instead of {p0,i}.

increase away from that point. To understand why δp∗
0 de-

creases for σ � 0.15, we analyzed the correlations between
p and p0 across all cells, both with and without p0 as tun-
able DOFs. As expected, the Pearson’s correlation coefficient
ρ(p, p0) rises when we incorporate cell p0 values as tunable
DOFs across all σ values (see SM [40]); the energy is lowered
by bringing pi closer to p0,i. But for σ � 0.15, p and p0

already exhibit strong correlations even when p0,i are not tun-
able DOFs. Introducing p0,i as tunable DOFs only marginally
enhances this correlation, so δp∗

0 decreases as shown in Fig. 3.
Finally, we consider the preferred cell areas, A0,i. In tissues

where A0,i = A0 is the same for all cells, altering A0 while
keeping P0 fixed does not affect p∗

0 due to the confluency con-
straint (

∑
Ai = constant = L2) [45,46]. Yang et al. [45] found

that the difference between A0 and the actual area 〈A〉 = N/L2

alters the overall pressure of the system, but not the shear
stresses. We find that even in the presence of heterogeneous
A0,i values, p∗

0 is unaffected by changes in the average target
area 〈A0〉 (see SM [40]), so in what follows we hold 〈A0〉 = 1
fixed. The solid black circles in Fig. 3(b) shows that varying
the width of the distribution of the dimensionless a0,i in Eq. (1)
also does not affect the transition point. Note that defining
target shape factors as P0,i/〈Ai〉 would introduce variability
in the transition point with σa0 (see SM [40]). This suggests
that the enhanced rigidity discussed in Ref. [36] is caused by
heterogeneity in target shape indices (p0,i = P0,i/

√
A0,i) and

not by heterogeneity in P0,i.
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Given these results, we promote {A0,i} to tunable DOFs
while keeping 〈A0,i〉 fixed. This introduces two sets of tunable
DOFs in the dimensionless energy in Eq. (1), namely {a0,i}
and {p0,i}. We have already shown how introducing {p0,i} as
tunable DOFs affects rigidity, so now we consider the effects
of a0,i in isolation. To do so, we maintain a constant target
shape factor for cells, i.e., p0,i = p0, by coupling the target
perimeters {P0,i} with the target areas, {P0,i = p0

√
A0,i}. This

allows us to consider only {a0,i} while keeping the average
〈A0,i〉 = 1.0 at homogeneous p0,i = p0. We find that intro-
ducing {a0,i} as tunable DOFs leaves the scaling exponent for
the shear modulus unchanged (see SM [40]). Similar to {p0,i},
the {a0,i} tunable DOFs shift the transition downwards. This
occurs at all values of the width of {a0,i} distribution, σa0 , with
the maximum shift occurring around σa0 ≈ 0.3. Correlations
in a0,i from cell to cell causes τi j in Eq. (2) to vanish for
some edges, shifting the percolation of nonzero tensions to
lower p∗

0.

IV. DISCUSSION

We have explored the effects of adding tunable DOFs in
2D vertex models on the rigidity transition point, p∗

0. The
transition is unaffected when cell stiffnesses KA and KP are
allowed to vary. In contrast, introducing preferred cell areas
or perimeters as tunable DOFs significantly alters the tissue’s
energy landscape, shifting p∗

0 downwards. Learned spatial
correlations in p0 or a0 can soften a tissue, and there are
optimal values for the heterogeneity in p0 (σp0 ≈ 0.15) and
a0 (σa0 ≈ 0.3) that lead to the largest shift of the transition.

Tunable DOFs have previously been introduced into net-
works that become rigid when the number of physical DOFs
equals the number of physical constraints [1,3,4,30]. In con-
trast, vertex models are highly under-constrained and become
rigid through geometric incompatibility [31]. Our finding that
rigidity in these models is also strongly affected by tunable
DOFs suggests that vertex models can be used to study ep-
ithelial mechanics in terms of double optimization processes.

It is well established that systems with fixed topology
can learn intricate tasks [7]. While Hagh et al. [30] demon-
strated that jammed particle packings subject to frequent
rearrangements can learn to identify ultrastable states, it is
difficult to tune arbitrary mechanical responses into typi-
cal jammed states because they are marginally stable to
rearrangements [47]. Confluent epithelial tissues lie in an
intermediate state between these two extremes—topological

rearrangements, primarily in the form of T1 transitions, can
occur but are not nearly as prevalent as in jammed packings.
Our finding that preferred shape indices and cell areas effec-
tively tune rigidity in vertex models suggests that introducing
them as tunable DOFs could be a fruitful way of obtaining
complex responses in systems that allow topological rear-
rangements.

The framework of physical learning with {p0,i} or {a0,i} as
tunable DOFs could provide a new paradigm for understand-
ing biological tissue mechanics. Individual cells can control
cell- and molecular-scale properties, including the concen-
tration of adhesion molecules and myosin motors, which in
turn govern the preferred shape index locally [16,27] and alter
effective cell-cell interactions. Our work indicates that tissues
should be able to learn if they follow a global gradient closely
enough. In other systems, it has been possible to identify
local learning rules that project sufficiently onto the global
gradient to allow double optimization [6,8,9,11,12]. It would
be interesting to study whether local rules governing the dy-
namics of cell shapes and tensions that have already been
proposed [17,48,49] project onto gradients of useful global
cost functions, or conversely, to hypothesize cost functions for
tissues and search for possible local learning rules that enable
them to be minimized. More broadly, this framework could
be useful for predicting how the dynamics of tissues arises
from variation of cellular properties across developmental or
evolutionary timescales.
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